簡易檢索 / 詳目顯示

研究生: 林福盛
Lin, Fu-Sheng
論文名稱: 正負型有機薄膜的沉積及其應用在有機光電元件之研究
Preparation and Characterization of P type and N type Organic Thin Films for Organic Optical Device Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 掺雜五環素
外文關鍵詞: Pentacene
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討利用鈉掺雜與碘摻雜來成長正負型五環素有機薄膜的一系列研究。吾人利用SEM及AFM來檢查有機薄膜的表面形態、FTIR與PL來研究鍵結及能隙大小,並量測正負性二極體特性來判定正負掺雜的有效性。最後依其正負性的特性來研製PEN/Si/PEN(NPN、PNP)異質接面雙極性光電晶體,研究不同薄膜成長參數對其光暗電流及增益值的影響。實驗結果中吾人發現,鈉與碘的摻雜的確能使有機材料產生錯合物而形成類似矽基板具有正型及負型整流的之電壓–電流特性曲線。
    此外吾人發現所發展出的雙極性電晶體不照光電流在以醋酸鈉及碘掺雜時,不會有顯著之電流增益(β=1.3~1.8),但照光後電流增益變大(β=2.9~4)。但如以醯銨鈉掺雜時在不照光電流卻有顯著之電流增益(β=19),但照光後之增益(β=3.6)卻與前兩者相去不遠。因此吾人認為不照光電流的增益應與摻雜材料有關,而光電流增益則應與矽基板之材質有關。

    In this thesis, we study utilizing the Na dopant and the I2 dopant to prepare p type and n type Pentacene organic thin films on n type and p type Si substrates, respectively. We use SEM and AFM to analyze the films’ morphology, while FTIR and PL for bond structure and band gap. The Schottky and ohmic characteristics of the organic/Si heterojunctions (pn, np, pp, and nn) are examined with measuring I-V curve. Besides, p- Pentacene /n-Si/ p- Pentacene and n-Pentacene /p-Si/ n- Pentacene hetero-junction bipolar phototransistors were prepared and its DC I-V curves with and without light irradiation were measured, respectively. Without light irradiation, the current gain of the bipolar transistor is 1.3~1.8 with CH3COONa or I2 dopants, while under light illumination, the β is raised to 3~4. However, if the NaNH2 is used as dopant, the β is improved to19 for dark, but under light illumination, the β is almost no changed (~3.6), which is similar to use CH3COONa as dopant. Hence, we suspect the dark current gain is related to dopant, while the photo current gain is dominated by the Si substrate. Moreover, the parameters affect the transistor’s dark current, photo current, and β.

    中文摘要.................................................Ⅰ 英文摘要.................................................Ⅲ 目錄.....................................................Ⅳ 附表與附圖目錄...........................................Ⅶ 第一章、 前言............................................01 第二章、 PN二極體元件、雙極性電晶體元件及有機材料碘與鈉掺雜原理.....................................................04 2-1 PN二極體元件結構及工作原理...........................04 2-2 雙極性電晶體元件結構及工作原理.......................05 2-3 光電晶體元件結構及工作原理...........................06 2-4 有機材料鈉與碘摻雜之特性及理論.......................07 2-4-1有機材料鈉與碘摻雜之特性及理論......................07 2-4-2碘與鈉掺雜有機雙極性光電晶體元件之研究動機..........08 第三章、 有機PN二極體元件與有機雙極性光電晶體元件之成長系統與製備流程...............................................10 3-1 成長系統.............................................10 3-1-1 真空蒸著系統(Thermal Vacuum Evaporation System)....10 3-1-2退火系統(Annealing System)..........................11 3-2有機PN二極體元件製備流程..............................11 3-3-1 矽基板清洗.........................................11 3-3-2 有機薄膜沉積.......................................12 3-3 有機雙極性光電晶體元件製備流程.......................13 3-3-1 矽基板清洗.........................................13 3-3-2 有機薄膜沉積.......................................13 第四章、 實驗結果與討論..................................15 4-1 鈉摻雜與碘掺雜五環素有機薄膜之特性分析...............16 4-1-1 鈉摻雜與碘掺雜五環素薄膜之SEM、AFM與SIMS分析.......16 4-1-2 鈉掺雜與碘摻雜五環素薄膜之PL與FTIR特性分析.........18 4-2 鈉摻雜與碘掺雜五環素有機正型與負型薄膜之特性分析.....18 4-2-1 鈉摻雜與碘掺雜五環素有機薄膜於P型矽基板上之電流-電壓特性分析.................................................20 4-2-2 鈉摻雜與碘掺雜五環素有機薄膜於N型矽基板上之電流-電壓特性分析.................................................22 4-3 鈉掺雜與碘摻雜有機雙極性光電晶體元件之電流-電壓特性分析.......................................................24 4-3-1 鈉掺雜有機雙極性光電晶體元件之電流-電壓特性分析....24 4-3-2 碘掺雜有機雙極性光電晶體元件之電流-電壓特性分析....25 第五章、 結論與未來展望..................................27 5-1 結論.................................................27 5-2 未來展望.............................................28 參考文獻.................................................29

    [1] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting diodes using TPD derivates with diphenylstylyl groups as hole transport layer”, Thin Solid Films, vol.363, pp.33-36 (2000).
    [2] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Appl. Phys. Lett., vol.83, pp.1038-1040 (2003).
    [3] Z. Bao, A. Dodabalapur, and A. J. Lovinger, ”Soluble and processable regioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Appl. Phys. Lett., vol.69, pp.4108-4110 (1996)
    [4] Y. Jin, Z. Rang, Marshall I. Nathan, P. P. Ruden, Christopher R. Newman, and C. Daniel Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Appl. Phys. Lett., vol.85, pp.4406-4408 (2004)
    [5] T. H. Chou, S. F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, and C. Y. Lin, “Significantly Improved Luminance of Organic Light-Emitting Diodes by Doping Iodine and Nitrogen Treatment”, Japanese Journal of Applied Physics Vol.46, pp.2753-2757 (2007).
    [6] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An Iodine-doped polymer light-emitting diode”, Appl. Phys. Lett. Vol.71, pp.2415-2417 (1997).
    [7] C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. MacDiarmid, and A. J. Heeger,”Polyacetylene, (Ch)x: N-type and p-type doping and compensation.”, Appl. Phys. Lett. Vol.33, PP.18-20 (1978).
    [8] 陳金鑫,黃孝文,”有機電激發光材料與元件”,五南圖書出版公司, (2006).
    [9] Y. -Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, “Pentacene Organic Thin-Film Transistors – molecular Ordering and Mobility.”, IEEE Electron. Device Lett. Vol.18, NO.3,PP.87-89 (1997).
    [10] J. M. Shannon, “A majority-carrier camel diode”, Appl. Phys. Lett., vol.35, pp.63-65, (1979).
    [11] T. Wakimoto, Y, Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, “Organic EL Cells Using Alkaline Metal Compounds as Electron Injection Materials.”, IEEE Trans. Electron. Devices, vol. 44, NO. 8, PP.1245-1248, (1997).
    [12] C. Ganzorig, M. Fujihira, “Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition.”, Appl. Phys. Lett., vol.85, PP.4774-4776,(2001).
    [13] J. Kido, T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer.”, Appl. Phys. Lett., vol.73, PP.2866-2868,(1998).
    [14] S. S. Kim, Y. S. Choi, K. Kim, J. H. Kim, and S. Im, “Fabrication of p-pentacene/n-Si organic photodiodes and Characterization of their photoelectric properties”, Appl. Phys. Lett., vol.82, pp.639-641, (2002).
    [15] J. Lee, S. S. Kim, K. Kim, J. H. Kim, and S. Im, “Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films”, Appl. Phys. Lett., vol.84, pp.1701-1703, (2004).
    [16] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., vol.48, pp.183-185,(1985).
    [17] J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, M. Pfeiffer, “High efficiency organic solar cells based on single or multiple PIN structures”, Thin Solid Films, vol.451-452, pp.515-517, (2004)
    [18] S. P. Park, S. S. Kim, J. H. Kim, C. N. Whang, and S. Im, “Optical and luminescence characteristics of thermally evaporated pentacene films on Si”, Appl. Phys. Lett., vol.80, pp.2872-2874, (2002).
    [19] The Noble Prize in Chemistry 2000- Information for public
    (http://www.noble.se/chemistry /laureates/2000/public.html)
    [20] J. M. Choi, D. K. Hwang, J. H. Kim, and S. Im, “Transparent thin-film transistors with pentacene channel, AlOX gate, and NiOX electrodes”, Appl. Phys. Lett., vol.86, pp.123505, (2005).

    下載圖示 校內:2012-07-05公開
    校外:2012-07-05公開
    QR CODE