簡易檢索 / 詳目顯示

研究生: 陳秀瑜
Chen, Shiou-yu
論文名稱: 以DSRC車間通訊為基礎之高速公路行車防撞機制之設計
The Design of a DSRC Inter-Vehicle Communication Based Collision Avoidance Mechanism for Highway Safety
指導教授: 楊中平
Young, Chung-ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 95
中文關鍵詞: 交通模擬高速公路安全碰撞預警機制網路模擬
外文關鍵詞: traffic simulation, network simulation, CCPWM, Dedicated Short Range Communications (DSRC), highway safety
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據交通部統計,汽車駕駛者在行駛高速公路時,因未保持安全的行車間距或是在遇到緊急狀況時無法及時煞車而導致車禍發生的次數,佔了約所有交通事故發生原因的百分之二十五,是非常大的比例;因此,如何提醒駕駛者保持安全的行車距離並提供一個緊急警告機制來降低前後車碰撞發生率,是非常重要的議題。
    本篇論文提出一個以Dedicated Short Range Communication(DSRC)車間通訊為基礎的碰撞避免機制 ── Cooperative Collisions Prediction and Warning Mechanism(CCPWM)來提供駕駛員與乘客非常重要的保護。透過DSRC來交換一些必要的資訊,例如:位置、車速以及加速狀況,CCPWM可以事先計算出車禍發生的可能性,即時提醒駕駛者並督促駕駛者保持適當的行車間距,以減少與前後車發生碰撞的機會,降低車禍的發生率;CCPWM亦可在車輛發生緊急狀況時,例如緊急煞車,以提供「向周圍車輛廣播緊急警告」的方式來降低連環車禍的發生率。
    為了驗證CCPWM的可靠性,本篇論文設計了一個名為HiTSim(DSRC based Highway Traffic Simulator)的模擬器,它可以模擬高速公路的交通狀況與以DSRC為基礎的車用無線網路(Vehicular Ad Hoc Networks, VANETs)的通訊狀況。在這個模擬器上,我們可以清楚地比較出CCPWM對碰撞發生率的影響,它將大幅降低車禍率;再者,即使仍有碰撞事故發生,碰撞時的車速與衝撞力都下降了許多,駕駛員與乘客的安全都有較多的保障。

    According to the statistics from Ministry of Transportation and Communication, R.O.C [30], tailgating accounts for 25% of all traffic accidents. Tailgating occurs when drivers fail to keep a safe driving distance or when drivers lack the sufficient amount of time to react and stop the vehicle. Therefore, how to remind the drivers to keep safe distance and how to provide an emergency warning mechanism to reduce the collision ratio is a very important issue.
    This thesis proposes a Dedicated Short Range Communication (DSRC) inter-vehicle communication based Collision Avoidance Mechanism ─ Cooperative Collisions Prediction and Warning Mechanism (CCPWM) to provide of protection for drivers and passengers on highway. By exchanging necessary information such as position, velocity, and acceleration situation through DSRC, CCPWM can measure the possibility of a collision to remind and monitor the drivers to keep safe distance in order to reduce the ratio of tailgating, and also provide another solution by broadcasting emergency warning to surrounding vehicles, in order to decrease the ratio of multi-vehicle chain accidents.
    In order to prove the reliability of CCPWM, a simulator, HiTSim (DSRC based Highway Traffic Simulator), is designed. It can simulate the situation of highway traffic and the situation of DSRC based Vehicular Ad Hoc Networks (VANETs). By HiTSim, we can figure out the influence of CCPWM on traffic crash ratio clearly. It reduces a large percentage of traffic crash. Furthermore, even if the traffic crash still occurs, CCPWM can effectively lower the collision speed and impulsive force. The safety of drivers and passengers are ensured by CCPWM very much.

    CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 OBJECTIVE 4 1.3 ORGANIZATION OF THIS THESIS 5 CHAPTER 2 BACKGROUND TECHNOLOGIES 7 2.1 THE ALGORITHM OF SAFE DISTANCE 7 2.2 COOPERATIVE COLLISION AVOIDANCE (CCA) 9 2.3 DIFFERENTIAL GLOBAL POSITIONING SYSTEM (DGPS) 12 2.4 DEDICATED SHORT-RANGE COMMUNICATIONS (DSRC) 13 2.5 MANETS / VANETS 15 CHAPTER 3 RELATED WORKS 18 3.1 RECENT TRAFFIC SIMULATION 18 3.1.1 SUMO 18 3.1.2 VISSIM 20 3.1.3 CORSIM 21 3.2 RECENT NETWORK SIMULATION 22 3.2.1 NS-2 22 3.2.2 NCTUNS 23 3.2.3 JIST/SWANS 24 3.3 VANETS SIMULATION 25 3.3.1 TRANS 25 3.3.2 STRAW 26 3.4 CHAPTER SUMMARY 27 CHAPTER 4 THE ALGORITHM OF CCPWM 30 CHAPTER 5 THE ARCHITECURE OF HITSIM 35 5.1 OVERVIEW 35 5.2 TRAFFIC SIMULATOR 37 5.2.1 TRAFFIC COORDINATOR 38 5.2.2 VEHICLE MANAGEMENT 39 5.2.2.1 VEHICLE INFORMATION CONTROL 40 5.2.2.2 CCPWM CONTROL 40 5.2.2.3 DRIVER BEHAVIOR CONTROL 41 5.2.3 ROAD MANAGEMENT 42 5.3 NETWORK SIMULATOR 42 5.3.1 NETWORK COORDINATOR 43 5.3.2 NETWORK INTERFACE 44 5.3.2.1 MAC EXTENSION LAYER IMPLEMENTATION OF DSRC 46 5.3.2.2 MAC LAYER IMPLEMENTATION OF DSRC 47 5.3.2.3 PHY LAYER IMPLEMENTATION OF DSRC 48 CHAPTER 6 HITSIM SIMULATION ENVIRONMENT 50 6.1 SIMULATION COMPONENTS OF HITSIM 50 6.1.1 INITIAL PARAMETERS 51 6.1.1.1 VEHICLE GLOBAL PARAMETERS 51 6.1.1.2 ROAD GLOBAL PARAMETERS 52 6.1.1.3 THE OTHERS 53 6.1.2 SIMULATION PARAMETERS 54 6.2 MANIPULATION OF HITSIM 55 6.2.1 DATA INPUT 55 6.2.1.1 NORMAL DATA SETTING 56 6.2.1.2 SCENARIO INPUT 57 6.2.2 FUNCTION DESCRIPTION AND USAGE 60 6.2.2.1 BASIC FUNCTIONS 60 6.2.2.2 SYSTEM TIME RATIO 61 6.2.2.3 VEHICLE CONDITION SETTING AND BEHAVIOR CONTROL 62 6.2.2.4 TRAFFIC CONDITION OBSERVATION 65 6.2.2.5 NETWORK COMMUNICATION CONDITION OBSERVATION 66 6.2.3 DATA OUTPUT 67 6.3 SCENARIO ANALYSIS 69 6.3.1 TRAFFIC SITUATION 69 6.3.2 ACCIDENTS AND RESULTS 72 6.3.2.1 LANE CHANGING 72 6.3.2.2 EMERGENCY BRAKE 76 6.3.2.3 TRAFFIC ACCIDENT 77 CHAPTER 7 SIMULATION EVALUATION 79 7.1 SIMULATION ANALYSIS 79 7.1.1 NORMAL CASE 79 7.1.2 BEST CASE 80 7.1.3 SPECIAL CASE 81 7.2 PACKET COLLISIONS 83 7.3 INCIDENCE OF MULTI-VEHICLE CHAIN COLLISIONS 85 7.4 AVERAGE SPEED OF COLLISION 87 CHAPTER 8 CONCLUSIONS AND FUTURE WORKS 89 8.1 CONCLUSIONS 89 8.2 FUTURE WORKS 89

    [1] Alexander Kirchner, Christian Ameling, “Integrated Obstacle and Road Tracking using a Laser Scanner,” Intelligent Vehicles Symposium, IEEE, pp. 1829-1837, 2000.
    [2] ASTM E2213-03, “Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems — 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, pp. 19428-2959, United States, July 2003.
    [3] CORSIM – Microscopic Traffic Simulation Model,
    http://www-mctrans.ce.ufl.edu/featured/TSIS/Version5/corsim.htm
    [4] Dedicated Short-Range Communications (DSRC) Home
    http://www.leearmstrong.com/DSRC/DSRCHomeset.htm
    [5] GPS - http://en.wikipedia.org/wiki/Global_Positioning_System
    [6] Han-Shue Tan and Jihua Huang, “DGPS-Based Vehicle-to-Vehicle Cooperative Collision Warning: Engineering Feasibility Viewpoints,” IEEE Transactions on Intelligent Transportation Systems, Vol. 7, No. 4, pp. 415-428, December 2006.
    [7] JiST/SWANS - Java in Simulation Time / Scalable Wireless Ad hoc Network Simulator, http://jist.ece.cornell.edu/
    [8] L. Briesemeister and G. Hommel, “Disseminating Messages among Highly Mobile Hosts Based on Inter-vehicle Communication,” Intelligent Vehicle Symposium, IEEE, Piscataway NJ, pp. 109-131, 2000.
    [9] NCTUns – NCTU network simulation, http://nsl.csie.nctu.edu.tw/nctuns.html
    [10] NS-2 - the network simulator, http://www.isi.edu/nsnam/ns/
    [11] Oncil Ararat, Emre Kural and Bilin Aksun Guiven, “Development of a Collision Warning System for Adaptive Cruise Control Vehicles Using a Comparison Analysis of Recent Algorithms,” Intelligent Vehicles Symposium, IEEE, pp. 194-199, June 2006.
    [12] Qt - http://www.trolltech.com/
    [13] Q. Xu, R. Sengupta and D. Jiang, “Design and Analysis of Highway Safety Communication protocol in 5.9 GHz Dedicated Short Range Communication Spectrum,” Proceedings of IEEE Vehicle Technology Conference, vol. 57, no. 4, pp. 2451-2455, 2003.
    [14] Raymond Tatchikou, Subir Biswas, and Francois Dion, “Cooperative Vehicle Collision Avoidance using Inter-vehicle Packet Forwarding ,” IEEE Globecom, pp. 1762-1776, 2005.
    [15] Rodolfo Oliveira, Luis Bernardo, Paulo Pinto, “Flooding Techniques for Resource Discovery on High Mobility MANETs”, IWWAN, pp. 1451-1466, 2005
    [16] SUMO – Simulation of Urban Mobility,
    http://sumo.sourceforge.net/overview.shtml
    [17] Stefan Ernst, Christoph Stiller, Jens Goldbeck, Christoph Roessig, “Camera Calibration for Lane and Obstacle Detection”, Proceedings of IEEE Intelligent Transportation Systems, pp. 122-139, 1999.
    [18] STRAW (STreet RAndom Waypoint) - vehicular mobility model for network simulations
    http://www.aqualab.cs.northwestern.edu/projects/STRAW/index.php
    [19] T. Nadeem, S. Dashtinezhadd, C. Liao, and L. Iftode, “TrafficView: Traffic Data Dissemination Using Car-to-Car Communication,“ ACM Sigmobile Mobile Computing and Communications Review, Special Issue on Mobile Data Management, No. 19, pp. 959-978, July 2004.
    [20] TraNS - Traffic and Network Simulation Environment, http://wiki.epfl.ch/trans
    [21] VANETs - Vehicular Ad-hoc Networks, http://www.cse.unsw.edu.au/~klan/move/
    [22] Vissim - Visual Traffic Simulation,
    http://www.tomfotherby.com/Contents/Education/Project/index.html
    [23] Wu, H., R. Fujimoto, R. Guensler, M. Hunter, “MDDV: A Mobility-Centric Data Dissemination Algorithm for Vehicular Networks,” Proceedings of the First ACM Workshop on Vehicular Ad Hoc Networks (VANET) in conjunction with Mobicom, pp. 192-198, October 2004.
    [24] Q. Xu, R. Sengupta, and D. Jiang, “Design and Analysis of Highway Safety Communication Protocol in 5.9 GHz Dedicated Short Range Communication Spectrum,” Proceedings of IEEE Vehicle Technology Conference, pp. 499-518, Spring 2003.
    [25] Qing Xu, Tony Mak, Jeff Ko, and Raja Sengupta, “MAC Protocol Design for Vehicle Safety Communications in Dedicated Short Range Communications Spectrum,” IEEE Transactions on Intelligent Transportation Systems, pp. 203-213, 2004.
    [26] Qing Xu, Tony Mak, Jeff Ko, and Raja Sengupta, “Vehicle-to-vehicle safety messaging in DSRC,” Proceedings of the first ACM workshop on Vehicular ad hoc networks, ACM Press, 2004.
    [27] X. Yang, J. Liu, F. Zhao, and N. Vaidya, “A Vehicle-to-Vehicle Communication Protocol for Cooperative Collision Warning,” Proceedings of MobiQuitous, Boston, MA, USA, pp. 121-130, August 2004.
    [28] Yukinori Yamada, Setsuo Tokoro, Yasuhiro Fujita, “Development of a 60 GHz Radar for Rear-end Collision Avoidance,” Intelligent Vehicles Symposium, IEEE, pp.326-349, 1994.
    [29] 高速公路及快速公路交通管制規則, 交通部台灣區國道高速公路局http://www.freeway.gov.tw/index_manner.asp
    [30] 交通部臺灣區國道高速公路局,"94高速公路年報",交通部臺灣區國道高速公路局,臺北縣,民94

    下載圖示 校內:2008-06-22公開
    校外:2008-06-22公開
    QR CODE