簡易檢索 / 詳目顯示

研究生: 游力慈
Yu, li-tsz
論文名稱: 以都市土地使用強度推估碳排放量及分級管制
Estimating Urban Carbon Emissions and Graded Control Based on Land Use Intensity
指導教授: 林子平
Lin, Tzu-Ping
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 120
中文關鍵詞: 碳收支地圖容積率綠覆率都市碳排放土地利用強度
外文關鍵詞: Carbon Emissions Mapping, Floor Area Ratio (FAR), Green Coverage Ratio, Urban Carbon Emissions, Land-Use Intensity
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章、 緒論 1 第一節、 研究背景與動機 1 第二節、 研究目的 2 第三節、 研究流程 3 第二章、 文獻回顧 5 第一節、 碳預算分配方式計算 5 第二節、 碳排放計算科學研究 9 第三節、 都市土地利用結構與碳排放關聯性 13 第四節、 碳排放管理整合與碳容積概念的應用 16 第五節、 臺灣與臺北市的具體政策背景 18 第三章、 研究方法 20 第一節、 研究地點與研究範疇 20 第二節、 碳排放計算式建立方法 23 第三節、 碳收支計算成果 30 第四節、 碳收支計算公式 32 第五節、 驗證部分計算成果 32 第四章、 碳收支評估公式簡化及影響參數探討 34 第一節、 網格使用強度特徵判別 34 第二節、 運用網格特徵因子推算簡易預測式 36 第三節、 小結 39 第四節、 簡易預測式成果與驗證 40 第五章、 基於容積率與綠覆率的碳排放區間劃分 42 第一節、 數據視覺化與散點圖繪製 42 第二節、 組平均計算及迴歸成果檢視 44 第三節、 綠覆率與容積率交互影響關係探討 46 第六章、 基於容積率之碳排放區間劃分 47 第一節、 組平均計算及區間分析 47 第二節、 組平均成果碳排等級區間劃分 52 第三節、 碳排放基準值與實際值比較 56 第四節、 小結 62 第七章、 以都市計畫單位評估碳收支迴歸公式 63 第一節、 都市計畫資料預備 64 第二節、 都市計畫街廓碳收支計算與迴歸分析 67 第八章、 碳收支基準值之設定及政策應用 79 第一節、 都市碳容積基準值之建立 79 第二節、 都市計畫土地使用分區管制 81 第三節、 引入碳排放容積移轉概念 83 第四節、 都市更新區域之參考評估 84 第九章、 結論與建議 85 第一節、 結論 85 第二節、 研究限制與後續建議 86 參考文獻 88 附錄 93

    1. Agreement, P. (2015). Paris agreement. report of the conference of the parties to the United Nations framework convention on climate change (21st session, 2015: Paris). Retrived December,
    2. Broitman, D., & Koomen, E. (2015). Residential density change: Densification and urban expansion. Computers, environment and urban systems, 54, 32-46.
    3. Burgalassi, D., & Luzzati, T. (2015). Urban spatial structure and environmental emissions: A survey of the literature and some empirical evidence for Italian NUTS 3 regions. Cities, 49, 134-148. https://doi.org/https://doi.org/10.1016/j.cities.2015.07.008
    4. Carpio, A., Ponce-Lopez, R., & Lozano-García, D. F. (2021). Urban form, land use, and cover change and their impact on carbon emissions in the Monterrey Metropolitan area, Mexico. Urban Climate, 39, 100947. https://doi.org/https://doi.org/10.1016/j.uclim.2021.100947
    5. Cerezo, C., Sokol, J., AlKhaled, S., Reinhart, C., Al-Mumin, A., & Hajiah, A. (2017). Comparison of four building archetype characterization methods in urban building energy modeling (UBEM): A residential case study in Kuwait City. Energy and Buildings, 154, 321-334.
    6. Dong, H., Chen, Y., Huang, X., & Cheng, S. (2023). Multi-scenario simulation of spatial structure and carbon sequestration evaluation in residential green space. Ecological Indicators, 154, 110902. https://doi.org/https://doi.org/10.1016/j.ecolind.2023.110902
    7. Dong, L., Wang, Y., Ai, L., Cheng, X., & Luo, Y. (2024). A review of research methods for accounting urban green space carbon sinks and exploration of new approaches [Review]. Frontiers in Environmental Science, Volume 12 - 2024. https://doi.org/10.3389/fenvs.2024.1350185
    8. Doorga, J. R. S., Deenapanray, P. N. K., & Rughooputh, S. D. D. V. (2023). Geographic carbon accounting: The roadmap for achieving net-zero emissions in Mauritius Island. Journal of Environmental Management, 333, 117434. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.117434
    9. Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I. T., & Olsen, A. (2024). Global carbon budget 2024. Earth System Science Data Discussions, 2024, 1-133.
    10. Habert, G., Röck, M., Steininger, K., Lupisek, A., Birgisdottir, H., Desing, H., Chandrakumar, C., Pittau, F., Passer, A., & Rovers, R. (2020). Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings & Cities, 1(S 1), 429-452.
    11. Hersperger, A. M., Oliveira, E., Pagliarin, S., Palka, G., Verburg, P., Bolliger, J., & Grădinaru, S. (2018). Urban land-use change: The role of strategic spatial planning. Global Environmental Change, 51, 32-42.
    12. Huang, Y., Li, S., Lin, J., Zheng, L., Zhuang, C., Guan, C., Guo, Y., & Zhuang, Y. (2025). Nonlinear and threshold effects of urban building form on carbon emissions. Energy and Buildings, 329, 115243. https://doi.org/https://doi.org/10.1016/j.enbuild.2024.115243
    13. Jeong, K., Hong, T., & Kim, J. (2018). Development of a CO2 emission benchmark for achieving the national CO2 emission reduction target by 2030. Energy and Buildings, 158, 86-94. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.10.015
    14. Khamchiangta, D., & Yamagata, Y. (2024). Mapping urban carbon emissions in relation to local climate zones: Case of the building sector in Bangkok Metropolitan Administration, Thailand. Energy and Built Environment, 5(3), 337-347. https://doi.org/https://doi.org/10.1016/j.enbenv.2022.11.002
    15. Kuriakose, J., Jones, C., Anderson, K., McLachlan, C., & Broderick, J. (2022). What does the Paris climate change agreement mean for local policy? Downscaling the remaining global carbon budget to sub-national areas. Renewable and Sustainable Energy Transition, 2, 100030.
    16. Lau, T.-K., & Lin, T.-P. (2024). Investigating the relationship between air temperature and the intensity of urban development using on-site measurement, satellite imagery and machine learning. Sustainable Cities and Society, 100, 104982.
    17. Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barret, K. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
    18. Legg, S. (2021). IPCC, 2021: Climate change 2021-the physical science basis. Interaction, 49(4), 44-45.
    19. Levy, J. M., Hirt, S. A., & Dawkins, C. J. (2009). Contemporary urban planning. Routledge.
    20. Lin, H., Lin, T., & Tsay, Y. (2015). Green Building Evaluation Manual—Basic Version. Taipei: Architecture and Building Research Institute, Ministry of the Interior.
    21. Lin, T.-P., Lin, F.-Y., Wu, P.-R., Hämmerle, M., Höfle, B., Bechtold, S., Hwang, R.-L., & Chen, Y.-C. (2017). Multiscale analysis and reduction measures of urban carbon dioxide budget based on building energy consumption. Energy and Buildings, 153, 356-367. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.07.084
    22. Liu, H., Yan, F., & Tian, H. (2020). A vector map of carbon emission based on point-line-area carbon emission classified allocation method. Sustainability, 12(23), 10058.
    23. Nations, U. (n.d.). Cities and Pollution. United Nations Climate Action. https://www.un.org/en/climatechange/climate-solutions/cities-pollution
    24. Pacheco-Torres, R., Roldán, J., Gago, E., & Ordóñez, J. (2017). Assessing the relationship between urban planning options and carbon emissions at the use stage of new urbanized areas: A case study in a warm climate location. Energy and Buildings, 136, 73-85.
    25. Programme, U. N. U. N. H. S. (2022). World cities report 2022: envisaging the future of cities. United Nations Research Institute for Social Development.
    26. Qin, Q., Liu, Y., Li, X., & Li, H. (2017). A multi-criteria decision analysis model for carbon emission quota allocation in China's east coastal areas: Efficiency and equity. Journal of Cleaner Production, 168, 410-419. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.08.220
    27. Rahmati, B., Rabiei-Dastjerdi, H., Bibri, S. E., Aghajani, M. A., & Kazemi, M. (2024). Reducing urban energy consumption and carbon emissions: a novel GIS-based model for sustainable spatial accessibility to local services and resources. Computational Urban Science, 4(1), 37. https://doi.org/10.1007/s43762-024-00139-9
    28. Rodríguez-Fernández, L., Fernández Carvajal, A. B., & Bujidos-Casado, M. (2020). Allocation of Greenhouse Gas Emissions Using the Fairness Principle: A Multi-Country Analysis. Sustainability, 12(14), 5839. https://www.mdpi.com/2071-1050/12/14/5839
    29. Sancino, A., Max, S., Alessandro, B., & and Budd, L. (2022). What can city leaders do for climate change? Insights from the C40 Cities Climate Leadership Group network. Regional Studies, 56(7), 1224-1233. https://doi.org/10.1080/00343404.2021.2005244
    30. Sharifi, A., Wu, Y., Khamchiangta, D., Yoshida, T., & Yamagata, Y. (2018). Urban carbon mapping: Towards a standardized framework. Energy Procedia, 152, 799-808.
    31. Sharifi, E., Larbi, M., Omrany, H., & Boland, J. (2020). Climate change adaptation and carbon emissions in green urban spaces: Case study of Adelaide. Journal of Cleaner Production, 254, 120035. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120035
    32. Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., & Fradera, R. (2022). Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the Intergovernmental Panel on Climate Change, 10, 9781009157926.
    33. Steininger, K. W., Meyer, L., Nabernegg, S., & Kirchengast, G. (2020). Sectoral carbon budgets as an evaluation framework for the built environment. Buildings & Cities, 1(1).
    34. Sun, C., Zhang, Y., Ma, W., Wu, R., & Wang, S. (2022). The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review. Land, 11, 1430. https://doi.org/10.3390/land11091430
    35. Sung, C. H., C. Wijaya, A. K. Asri,W. Y. Liu, Y. R. Chern, T. A. Teo, C. D. Wu. (2024). Using casa model and uav multispectral imagery to estimate the net primary productivity of campus green space: a case study of a university campus. . In. The 29th International Symposium on Remote Sensing (ISRS 2024), Taichung, Taiwan.(Oral presentation). April 24-26, 2024.
    36. Suri, M., Betak, J., Rosina, K., Chrkavy, D., Suriova, N., Cebecauer, T., Caltik, M., & Erdelyi, B. (2020). Global Photovoltaic Power Potential by Country.
    37. Usman, A. M., & Abdullah, M. K. (2023). An assessment of building energy consumption characteristics using analytical energy and carbon footprint assessment model. Green and Low-Carbon Economy, 1(1), 28-40.
    38. Wang, G., & Han, Q. (2021). The multi-objective spatial optimization of urban land use based on low-carbon city planning. Ecological Indicators, 125, 107540.
    39. Wang, G., Han, Q., & de vries, B. (2019). Assessment of the relation between land use and carbon emission in Eindhoven, the Netherlands. Journal of Environmental Management, 247, 413-424. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.06.064
    40. Wang, G., Han, Q., & de Vries, B. (2020). A geographic carbon emission estimating framework on the city scale. Journal of Cleaner Production, 244, 118793.
    41. While, A., Jonas, A. E., & Gibbs, D. (2010). From sustainable development to carbon control: eco‐state restructuring and the politics of urban and regional development. Transactions of the Institute of British Geographers, 35(1), 76-93.
    42. Williges, K., Meyer, L. H., Steininger, K. W., & Kirchengast, G. (2022). Fairness critically conditions the carbon budget allocation across countries. Global Environmental Change, 74, 102481. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2022.102481
    43. Xiong, S., Yang, F., Li, J., Xu, Z., & Ou, J. (2023). Temporal-spatial variation and regulatory mechanism of carbon budgets in territorial space through the lens of carbon balance: A case of the middle reaches of the Yangtze River urban agglomerations, China. Ecological Indicators, 154, 110885. https://doi.org/https://doi.org/10.1016/j.ecolind.2023.110885
    44. Yin, L., Sharifi, A., Liqiao, H., & Jinyu, C. (2022). Urban carbon accounting: An overview. Urban Climate, 44, 101195.
    45. Zhang, X., Sun, J., Zhang, X., & Fenglai, W. (2024). Statistical characteristics and scenario analysis of embodied carbon emissions of multi-story residential buildings in China. Sustainable Production and Consumption, 46, 629-640.
    46. Zhang, Y., Wu, Q., & Fath, B. D. (2018). Review of spatial analysis of urban carbon metabolism. Ecological Modelling, 371, 18-24.
    47. Zhou, C., Wang, S., & Wang, J. (2019). Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Science of The Total Environment, 675, 472-482. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.269
    48. 氣候變遷因應法, (2023). https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0110031
    49. 臺北市土地使用分區管制自治條例, (2023). https://www.udd.gov.taipei/News.aspx?n=97BA42E4B2F238B6
    50. 臺北市政府都市發展局. (2023). 臺北市土地使用分區管制自治條例. https://www.udd.gov.taipei/News_Content.aspx?n=EB7A48F6186B9643&sms=725A1A74ED2EC15A&s=95F3544A3B0173EC
    51. 臺北市政府環境保護局. (2023). 臺北市淨零排放管理自治條例(草案). https://www.dep.gov.taipei/News_Content.aspx?n=8823&s=955929
    52. 顧翰琳, 邱英浩, 林淑雯, & 劉育芸. (2025). 雙北土地使用型態與建築用電碳排放空間關聯之研究 [A Study on the Spatial Correlation Between Land Use and the Carbon Emission of Building Electricity Consumption in Taipei Metropolis]. 都市與計劃, 52(1), 77-101. https://doi.org/10.6128/cp.202503_52(1).0004

    無法下載圖示 校內:2028-06-30公開
    校外:2028-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE