簡易檢索 / 詳目顯示

研究生: 李寧
Lee, Ning
論文名稱: 鳳山轉換斷層帶現今之斷層活動行為及其地震潛能分析
Fault behavior analysis of the Fengshan transfer fault zone and its earthquake potential estimate
指導教授: 景國恩
Ching, Kuo-En
共同指導教授: 陳國華
Chen, Kwo-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 182
中文關鍵詞: GPS精密水準地層下陷運動學斷層模型
外文關鍵詞: GPS, Precise leveling, Land subsidence, Kinematic fault model
相關次數: 點閱:85下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由台灣西南部之地形特徵解析與歷年GPS觀測資料分析顯示,鳳山轉換斷層帶極可能為台灣西南部主要活動斷層之一。然而,目前對於鳳山轉換斷層帶的地表變形形態、特性及其地震潛能所知甚少。另外,鳳山轉換斷層帶南段位於屏東平原南端的地層下陷區,而地表變形型態亦可能受到地層下陷的因素影響而無法完全反映構造運動所造成的地殼變形。故本研究利用台灣西南部2002至2010年共205個GPS測站資料,以及2000至2008年共150個內政部一等一級與一等二級水準網觀測資料,評估此區域因地層下陷造成的水平地表變形量,並分析鳳山轉換斷層帶的斷層活動性及其地震潛能。本研究首先以Bernese軟體進行GPS資料解算來獲得各測站之日座標時間序列,並採用最小二乘法計算水平速度場;垂直速度場則採用水準網計算成果。所有地表速度場皆相對於中國大陸邊緣之澎湖白沙測站S01R。在垂直速度場方面,山麓地區約有1-3 mm/yr之抬升,平原地區則約有0-30 mm/yr之下陷速率,其中約30 mm/yr之最大下陷速率位於屏東平原之最南端,而跨鳳山轉換斷層帶兩側並無明顯的垂直速度差異。本研究接著利用錯位模型反演垂直速度場推算因地層下陷所造成之水平方向變形量,結果顯示在屏東平原南端下陷速率為20-30 mm/yr之區域,因地層下陷所造成的水平位移量約為1 mm/yr。修正後之水平速度場分析結果顯示,旗山斷層以西約為30 mm/yr、以東約為50 mm/yr;方位角除了在跨鳳山轉換斷層帶以西之沿海區域約為245°外,其他區域則約為268°。跨越鳳山轉換斷層帶之水平速度剖面顯示,跨斷層的平行斷層走向分量皆約為15 mm/yr;垂直斷層走向分量於斷層北段兩側約4公里有約 1.9 mm/yr之擠壓,中段跨段層兩側有約1 mm/yr之伸張,南段兩側約7公里則為約 5.2 mm/yr之伸張。換言之,鳳山轉換斷層帶為一以左移為主之走向滑移斷層,斷層北段為鎖定斷層且具有擠壓分量;斷層中段以及南段為潛移斷層並具有伸張分量。本研究接續利用錯位模型反演水平速度場推算斷層幾何以及滑移速率。反演之結果顯示之斷層傾角約為50∘,深度則約為 7至13公里。而斷層北段之最大震間滑移速率約為 17.0 mm/yr;斷層中斷則約為 25.8 mm/yr;斷層南段約為 36.0 mm/yr。最後藉由滑移速率進一步估計斷層帶每年之能量累積約為 2.15×〖10〗^24 dyne-cm,且預估之地震周期約為 116.7 年。

    The analysis of GPS measurements nearby the Fengshan transfer fault zone (FTFZ) indicates that the FTFZ may be a major active fault in SW Taiwan. However, the fault geometry, the deformation pattern, the earthquake potential and the origin of the FTFZ still remains unclear. Moreover, the southern part of the FTFZ locates at the land subsiding area in southern tip of Pingtung plain. Due to surface deformation could be affected by land subsidence and it may cause surface measurement can not reflect crustal deformation caused by structures. Therefore, 205 GPS observations from 2002 to 2010 and precise leveling data from first-order first-class and first-order second-class leveling lines installed by the Ministry of Interior from 2000 to 2008 are used to understand the deformation pattern in southwestern Taiwan. The vertical velocity field shows the Western Foothills are uplifting with uplift rate of 5 to 20 mm/yr while other region in southwestern Taiwan is predominant with the subsidence rate between 0 and 30mm/yr. The large subsidence rate ~30 mm/yr concentrates at the southern tip of Pingting plain which caused by land subsidence. The pattern of the horizontal velocity field shows a significant velocity gradient from 30 mm/yr to 10 mm/yr west of the Chishan fault. Whereas east of the Chishan fault velocities are all about 50 mm/yr in about N268°. But in the coastal areas the velocity azimuth changes into N245° at west of the FTFZ. Then the vertical velocity field is inverted by dislocation model in order to estimate the horizontal deformation caused by land subsidence. The result shows that when the subsidence rate is about 20 to 30 mm/yr it will have about 1 mm/yr horizontal velocity due to the land subsidence. After performing a correction on the horizontal velocity field, the horizontal velocity profile shows that the fault parallel component has about 15 mm/yr difference across the fault. The fault normal component has 1.9 mm/yr contraction across the northern segment of the fault in about 4 km, 1 mm/yr extension across the middle segment and 5.2 mm/yr extension across the southern segment in about 7 km. Therefore, the FTFZ is a left-lateral strike-slip fault and the northern segment is locked with contraction component, the middle and southern segment are creeping with extension component. The fault geometry inferred by dislocation model shows the dip angle is about 50∘and the depth is about 7 to 13 km. The maximum interseismic slip rate of northern segment is about 17.0 mm/yr; the maximum interseismic slip rate of middle segment is about 25.8 mm/yr; the maximum interseismic slip rate of southern segment is about 36.0 mm/yr. Base on the modeling result, the estimated energy accumulation rate is 2.15×〖10〗^24 dyne-cm per year and the earthquake cycle is about 116.7 years.

    摘要 I Abstract II Acknowledgments III Content IV List of table VI List of figure VII 1. Introduction 1 1.1 Motivation 1 1.2 Purpose 4 2. Tectonic setting 5 2.1 Geological background of SW Taiwan 5 2.2 Faults 6 2.2.1 The Chaochou Fault 6 2.2.2 The Chishan fault 6 2.2.3 The Fengshan transfer fault zone 7 2.2.4 The Houchiali fault 7 2.2.5 The Hsiaokangshan fault 7 2.3 Hydrological background of Pingtung plain 9 3. Data processing 11 3.1 Precise leveling data and computation 11 3.1.1 Precise leveling data 11 3.1.2 Field work specifications 14 3.1.3 Systematic error corrections 14 3.2 GPS data and computation 17 3.2.1 GPS observations and its error source 17 3.2.2 GPS data 18 3.2.3 Computation strategies 20 4. Surface Velocity Field 22 4.1 The vertical velocity field 22 4.1.1 Vertical Velocity Estimation 22 4.1.2 The vertical velocity field of SW Taiwan 23 4.2 The horizontal velocity field 25 4.2.1 Horizontal velocity Estimation 25 4.2.2 The horizontal velocity field of SW Taiwan 30 4.3 Strain Rate Estimation 32 4.3.1 Strain rate computation 32 4.3.2 Strain rate field of SW Taiwan 34 5. Modeling of Land Subsidence 37 5.1 Opening-mode dislocation model and parameter testing 37 5.2 Modeling result and correction of horizontal velocity field 43 6. Velocity profile 49 7. 2D Fault Model 54 7.1 2D dislocation model 54 7.2 Modeling result of the Northern segment 56 7.3 Modeling result of the Middle segment 58 7.4 Modeling result of the Southern segment 60 8. Discussion 62 8.1 Fault behavior analysis 62 8.2 Earthquake potential estimation 66 9. Conclusion 69 10. References 71 Appendixes 76 1. Time series of campaign-mode GPS sites 76 2. Time series of continuous recorded GPS sites 161

    Bürgmann, R., D. Schmidt, R. M. Nadeau, M. d'Alessio, E. Fielding, D. Manaker, T. V. McEvilly, and M. H. Murray (2000), Earthquake Potential Along the Northern Hayward Fault, California, Science, 289(5482), 1178-1182.
    Bawden, G. W., W. Thatcher, and R. S. Stein (2001), Tectonic contraction across Los Angeles after removal of groundwater pumping effects, Nature, 412(6849), 812.
    Ben-Zion, Y., J. R. Rice, and R. Dmowska (1993), Interaction of the San Andreas Fault Creeping Segment with Adjacent great rupture zones and earthquake recurrence at Parkfield, Journal of Geophysical Research: Solid Earth, 98(B2), 2135-2144.
    Burbey, T. J. (2008), The Influence of Geologic Structures on Deformation due to Ground Water Withdrawal, Ground Water, 46(2), 202-211.
    Calassou, S., C. Larroque, and J. Malavieille (1993), Transfer zones of deformation in thrust wedges: An experimental study, Tectonophysics, 221(3–4), 325-344.
    Carpenter, M. C. (1993), Earth-fissure movements associated with fluctuations in ground-water levels near the Picacho mountains, south-central Arizona, 1980-84, edited, The University of Arizona.
    Chai, B. H. T. (1972), Structure and tectonic evolution of Taiwan, American Journal of Science, 272(5), 389-422.
    Chang, C. P., T. Y. Chang, C. T. Wang, C. H. Kuo, and K. S. Chen (2004), Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan, Mathematics and Computers in Simulation, 67(4–5), 351-359.
    Chen, K.-H., M. Yang, Y.-T. Huang, K.-E. Ching, and R.-J. Rau (2011), Vertical Displacement Rate Field of Taiwan From Geodetic Levelling Data 2000-2008, Survey Review, 43(321), 296-302.
    Chiang, C.-S., H.-S. Yu, and Y.-W. Chou (2004), Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system, Basin Research, 16(1), 65-78.
    Ching, K.-E., R.-J. Rau, J.-C. Lee, and J.-C. Hu (2007), Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005, Earth and Planetary Science Letters, 262(3–4), 601-619.
    Ching, K.-E., M.-L. Hsieh, K. M. Johnson, K.-H. Chen, R.-J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008, J. Geophys. Res., 116(B8), B08406.
    Crespi, J. M., Y.-C. Chan, and M. S. Swaim (1996), Synorogenic extension and exhumation of the Taiwan hinterland, Geology, 24(3), 247-250.
    Deffontaines, B., J. C. Lee, J. Angelier, J. Carvalho, and J. P. Rudant (1994), New geomorphic data on the active Taiwan orogen: A multisource approach, J. Geophys. Res., 99(B10), 20243-20266.
    Deffontaines, B., O. Lacombe, J. Angelier, H. T. Chu, F. Mouthereau, C. T. Lee, J. Deramond, J. F. Lee, M. S. Yu, and P. M. Liew (1997), Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach, Tectonophysics, 274(1–3), 61-82.
    Elgered, G., J. L. Davis, T. A. Herring, and I. I. Shapiro (1991), Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay, Journal of Geophysical Research: Solid Earth, 96(B4), 6541-6555.
    Fruneau, B., E. Pathier, D. Raymond, B. Deffontaines, C. T. Lee, H. T. Wang, J. Angelier, J. P. Rudant, and C. P. Chang (2001), Uplift of Tainan Tableland (SW Taiwan) revealed by SAR Interferometry, Geophysical Research Letters, 28(16), 3071-3074.
    Hanks, T. C., and H. Kanamori (1979), A moment magnitude scale, Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350.
    Heiskanen, W., and H. Moritz (1967), Physical geodesy, 364, edited, WH Freeman, San Francisco, Calif.
    Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (2001), GPS: Theory and Practice, Second ed., Springer-Verlag.
    Hopfield, H. S. (1971), Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data, Radio Science, 6(3), 357-367.
    Hsu, T., and H. Chang (1979), Quaternary faulting in Taiwan, Mem. Geol. Soc. China, 3, 155-165.
    Hu, J.-C., S.-B. Yu, J. Angelier, and H.-T. Chu (2001), Active deformation of Taiwan from GPS measurements and numerical simulations, J. Geophys. Res., 106(B2), 2265-2280.
    Hu, J.-C., H.-T. Chu, C.-S. Hou, T.-H. Lai, R.-F. Chen, and P.-F. Nien (2006), The contribution to tectonic subsidence by groundwater abstraction in the Pingtung area, southwestern Taiwan as determined by GPS measurements, Quaternary International, 147(1), 62-69.
    Hu, J.-C., et al. (2007), Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan, Journal of Asian Earth Sciences, 31(3), 287-302.

    Huang, M.-H., J.-C. Hu, C.-S. Hsieh, K.-E. Ching, R.-J. Rau, E. Pathier, B. Fruneau, and B. Deffontaines (2006), A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation, Geophysical Research Letters, 33(12), L12305.
    Huang, M.-H., J.-C. Hu, K.-E. Ching, R.-J. Rau, C.-S. Hsieh, E. Pathier, B. Fruneau, and B. Deffontaines (2009), Active deformation of Tainan tableland of southwestern Taiwan based on geodetic measurements and SAR interferometry, Tectonophysics, 466(3–4), 322-334.
    Jang, C.-S., S.-K. Chen, and Y.-M. Kuo (2013), Applying indicator-based geostatistical approaches to determine potential zones of groundwater recharge based on borehole data, CATENA, 101(0), 178-187.
    Johnson, K. M., H. Y.J., P. Segall, and Y. S.B (2001), Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophysical Research Letters, 28, 2285-2288.
    Kukkamaki, T. (1939), Formulas and tables for computation of leveling refraction, Publication of Geodetic Institute(27).
    Lacombe, O., F. Mouthereau, J. Angelier, and B. Deffontaines (2001), Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan, Tectonophysics, 333(1–2), 323-345.
    Lewis, C., S.-W. Chen, and P.-C. Yen (2004), Magnetic Surveying of the Chaochou Fault of Southern Taiwan: Culmination of Basement-Involved Surface Thrusting in Arc-Continent Collision, International Geology Review, 46(5), 399-408.
    Lienkaemper, J. J., G. Borchardt, and M. Lisowski (1991), Historic creep rate and potential for seismic slip along the Hayward Fault, California, Journal of Geophysical Research: Solid Earth, 96(B11), 18261-18283.
    Lin, I.-T., C.-H. Wang, C.-F. You, S. Lin, K.-F. Huang, and Y.-G. Chen (2010), Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan, Marine Chemistry, 122(1–4), 51-58.
    Lu, C.-Y., and J. Malavieille (1994), Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modelling, Earth and Planetary Science Letters, 121(3–4), 477-494.
    McClay, K. R. (1991), Glossary of thrust tectonic terms., in Thrust Tectonics, edited by K. R. McClay, pp. 419-433., Chapman and Hall, London.
    Mouthereau, F., O. Lacombe, B. Deffontaines, J. Angelier, and S. Brusset (2001), Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections, Tectonophysics, 333(1–2), 293-318.
    Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 75(4), 1135-1154.
    Prescott, W. H. (1979), Strain accumulation rates in the western United States between 1970 and 1978, Journal of Geophysical Research, 84, 5423.
    Rapp, R. H., and N. Balasubramania (1992), A conceptual formulation of a world height system, Department of Geodetic Science and Surveying, Ohio State University.
    Rappleye, H. S. (1948), Manual of leveling computation and adjustment, US Government Printing Office.
    Saastamoinen, J. (1973), Contributions to the theory of atmospheric refraction, Bull. Geodesique, 107(1), 13-34.
    Sagiya, T., S. Miyazaki, and T. Tada (2000), Continuous GPS Array and Present-day Crustal Deformation of Japan, Pure and Applied Geophysics, 157(11-12), 2303-2322.
    Shyu, J. B. H., K. Sieh, Y.-G. Chen, and C.-S. Liu (2005), Neotectonic architecture of Taiwan and its implications for future large earthquakes, Journal of Geophysical Research: Solid Earth, 110(B8), B08402.
    Steigenberger, P., M. Rothacher, R. Dietrich, M. Fritsche, A. Rülke, and S. Vey (2006), Reprocessing of a global GPS network, Journal of Geophysical Research: Solid Earth, 111(B5), B05402.
    Sun, S. (1963), The reef limestones and the geologic structures in the vicinity of Kaohsiung City, Taiwan, Pet. Geol. Taiwan, 2, 47-64.
    Sun, S. (1964), Photogeologic study of the Tainan-Kaohsiung coastal plain area, Taiwan, Petrol. Geol. Taiwan, 3, 39-51.
    Ting, C.-S., Y. Zhou, J. J. d. Vries, and I. Simmers (1998), Development of a Preliminary Ground Water Flow Model for Water Resources Management in the Pingtung Plain, Taiwan, Ground Water, 36(1), 20-36.
    Tsan, S., and W. Keng (1968), The Neogene rocks and major structural features of southwestern Taiwan, paper presented at Proc. Geol. Soc. China.
    Wang, S. (1976), ERTS-1 satellite imagery and its application in regional geologic study of southwestern Taiwan, Petrol. Geol. Taiwan, 13, 37-57.
    Ward, S. N. (1994), A multidisciplinary approach to seismic hazard in southern California, Bulletin of the Seismological Society of America, 84(5), 1293-1309.
    Wells, D. L., and K. J. Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, 84(4), 974-1002,A1001-A1004,B1001-B1011,C1001-C1049.

    Wiltschko, D. V., L. Hassler, J.-H. Hung, and H.-S. Liao (2010), From accretion to collision: Motion and evolution of the Chaochou Fault, southern Taiwan, Tectonics, 29(2), TC2015.
    翁群評 (2001),小崗山斷層及其附近構造,國立中央大學地球物理研究所碩士
    論文,共84頁。
    許書琴 (2012),泥貫入體與逆斷層活動在台灣西南部陸域造成之現今地表變形,測量及空間資訊學系碩士論文,共102頁。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE