| 研究生: |
邱雅琪 Chiu, Ya-Chi |
|---|---|
| 論文名稱: |
運用品質機能展開於尿液檢測應用軟體使用者介面之設計 User Interface Design of Urine Detection Application Using QFD Analysis |
| 指導教授: |
謝孟達
Shieh, Meng-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 尿液檢測應用軟體 、品質機能展開 、UX/UI 、LO-FI/HI-FI 、因素分析 |
| 外文關鍵詞: | Urine Detection Application, Quality Function Deployment, UX/UI, LO-FI/HI-FI, Exploratory Factor Analysis |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將探討以使用者為導向的尿液檢測應用軟體檢測介面設計,以方便性、容易操作、錯誤率低的介面呈現,將分析出來之尿液檢測應用軟體設計框架提供給相關介面設計師參考。
使用因素分析能將前期設計的AIO問卷內容,藉由因素分析進行歸類與命名,解說變易量為63.203%,KMO為0.844與P值小於0.05代表顯著因此樣本數可以使用,最終得出使用者對於介面的需求項目共六項,為元件1 命名為輔助提醒功能;元件2 圖示介面解讀;元件3 文字輔助解說;元件4 辨識度屬性高;元件5 清楚的介面配色;元件6 較佳的瀏覽模式。再者依據需求六個項目、介面設計四要素範圍,為框架、顏色、功能、圖示和介面拆解成四個設計要素項目,為個人資訊、檢測數據、簡易說明和檢測項目進行要素設計。經由品質展開後得出最佳品質七項,為設計要素,單純文字示意、圖文示意、檢測結果呈現、最先顯示異常狀態、異常項目列出、安全範圍示意及提醒檢測通知,根據最佳品質要素進行低保真線框圖的編排描繪,之後再進行高保真設計和SUS易用性測試。經由結果SUS易用性總分為87分B等級,符合易用性範圍值。
最後將得出最終尿液檢測應用軟體檢測結果介面框架,結果可供相關醫療應用軟體介面設計作為框架參考。
在前期設計就探討使用者需求可減少介面中的缺失,並且能提供設計更多面向的考量,在後期的驗證也能降低錯誤率,在設計上是非常有幫助的。本研究之貢獻於以下四點表示說明:1.提供介面設計師一個明確的設計方向與方法,可依據本研究方法進行。2.清楚確認各設計項目之間的關係與重要度。3.及早發現設計的矛盾與衝突之處,減少後續修正設計所導致的成本與時間增加。4.提供一個以使用者為中心的尿液檢測應用軟體檢測結果介面之設計參考。
This study explored the user-oriented interface design of urine detection applications, which was presented in an interface that was convenient, easy to operate, and with low error rate; it provided relevant interface designers with the design framework of urine detection applications analyzed for reference.
Factor analysis can be used to categorize and name the AIO questionnaire content of the preliminary design. Total variance explained was 63.203%, the KMO 0.844, and P value smaller than 0.05, indicating that the number of samples could be used. Eventually, this study came up with six items of user requirements for the interface: Component 1 was named auxiliary reminder function, Component 2 icon interface interpretation, Component 3 text-based explanation, Component 4 high recognition; Component 5 distinct interface color combination, and Component 6 better browsing mode. Based on the scope of the 6 items of requirements and 4 elements of the interface design, namely framework, color, function and icon, the interface was deconstructed into 4 items of design elements and element design was performed for personal information, detection data, simple instructions, and detection items. Seven qualities were acquired after the quality function deployment; they were design elements: simple text representation, text and graphic representation, presentation of detection results, showing abnormalities first, listing abnormal items, representation of safe range, and reminder for detection. Low-fidelity (LO-FI) wireframing was conducted based on the best quality elements, followed by high-fidelity (HI-FI) design and the system usability scale (SUS). According to the results of SUS, the total score was 87 and usability was rated B, which conformed to the range of usability. The final interface framework for the results of urine detection applications obtained in this study can serve as a reference for interface design of related medical applications.
Discussing user requirements in the preliminary design reduced the deficiencies of the interface and provided the design with more aspects of consideration. In addition, validation in the later stage can lower the error rate, which is highly beneficial to the design. The contribution of this study can be explained from the following four points: (1) providing interface designers with clear design direction and method based on this study; (2) clearly confirming the relationships among, and importance of, various design items; (3) finding contradictions and conflicts of the design early in order to reduce the cost and time increase caused by subsequent revisions to the design. 4. providing a reference for user-oriented design of the resulting interface of urine detection applications.
王文科, & 王智弘. (2014). 教育研究法: 台灣五南圖書出版股份有限公司.
王玲玲. (2016). 友善高齡者之手機網站設計. 福祉科技與服務管理學刊, 4(1).
池田拓司. (2013). 智慧手機 App UI/UX 設計鐵則:想做出好用的 App 和手機網站,就看這一本。: 台北市:旗標.
Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123.
Bartlett, M. S. (1951). An Inverse Matrix Adjustment Arising in Discriminant Analysis. Ann. Math. Statist., 22(1), 107-111. doi:10.1214/aoms/1177729698
Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7.
Brooke, J. (2013). SUS: a retrospective. Journal of usability studies, 8(2), 29-40.
Cerny, B. A., & Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate behavioral research, 12(1), 43-47.
Chou, Y., Tsai, P., Pai, J., Yen, H., & Lu, C. (2014). Application of Kano's two-dimensional quality model and QFD on a gender-friendly environment of hospital. Paper presented at the Proceedings of PICMET '14 Conference: Portland International Center for Management of Engineering and Technology; Infrastructure and Service Integration.
Comrey, A. L. (1988). Factor-analytic methods of scale development in personality and clinical psychology. Journal of Consulting and Clinical Psychology, 56(5), 754-761. doi:10.1037/0022-006X.56.5.754
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Deininger, M., Daly, S. R., Sienko, K. H., & Lee, J. C. (2017). Novice designers' use of prototypes in engineering design. Design studies, 51, 25-65.
Devy, N. P. I. R., Wibirama, S., & Santosa, P. I. (2017). Evaluating user experience of english learning interface using User Experience Questionnaire and System Usability Scale. Paper presented at the 2017 1st International Conference on Informatics and Computational Sciences (ICICoS).
Escamilla, E. F., Ostadalimakhmalbaf, M., Pariafsai, F., Ranka, N., Danesh, M., & Naderi Alizadeh, M. (2018). Impact of Using iPad Tablets in a Construction Communication Graphics Class: Evaluation Based on System Usability Scale. Journal of Educational Technology Systems, 47(1), 32-49. doi:10.1177/0047239518773744
Garrett, J. J. (2010). The elements of user experience: user-centered design for the web and beyond: Pearson Education.
Gkatzidou, V., Hone, K., Sutcliffe, L., Gibbs, J., Sadiq, S. T., Szczepura, A., . . . Estcourt, C. (2015). User interface design for mobile-based sexual health interventions for young people: design recommendations from a qualitative study on an online Chlamydia clinical care pathway. BMC medical informatics and decision making, 15, 72-72. doi:10.1186/s12911-015-0197-8
Gong, J., & Tarasewich, P. (2004). Guidelines for handheld mobile device interface design. Paper presented at the Proceedings of DSI 2004 Annual Meeting.
Gonzalez, M. E. (2019). Improving customer satisfaction of a healthcare facility: reading the customers' needs. Benchmarking-an International Journal, 26(3), 854-870. doi:10.1108/bij-01-2017-0007
Gorsuch, R. L. (1988). Exploratory Factor Analysis. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of Multivariate Experimental Psychology (pp. 231-258). Boston, MA: Springer US.
Haldankar, S. S. (2017). Moodboard: A Digital Solution for the Work-Life Balance in an Advertising Agency.
Hu, C., & Yeh, C. (2011). The synergy of QFD and TRIZ design practice — A case study for medical care bed. Paper presented at the Proceedings of 2011 International Conference on Modelling, Identification and Control.
Johnson, J. (2013). Designing with the mind in mind: simple guide to understanding user interface design guidelines: Elsevier.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
Karamchandani, H., Naeem, M. A., Mirza, F., & Baig, M. M. (2018). Improving Post-Hospital Discharge Management by Implementing the Discharge Summary on a Mobile Application. Paper presented at the 2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU).
Kascak, L. R., Rébola, C. B., & Sanford, J. A. (2014). Integrating Universal Design (UD) Principles and Mobile Design Guidelines to Improve Design of Mobile Health Applications for Older Adults. Paper presented at the 2014 IEEE International Conference on Healthcare Informatics.
Lazer, W. (1963). Life style concepts and marketing. Toward scientific marketing, 15(4), 130-139.
Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.
Lin, C., & Wang, C. (2018). Evaluation of System Ease of Use Scaffolding Theory on Mobile Games App. Paper presented at the 2018 1st International Cognitive Cities Conference (IC3).
Liu, S., Wang, M., Lee, Y., & Cheng, Y. (2016). Applying Kano's Model and QFD in User Interface Research of Shoulder and Neck Pains Examining Software. Paper presented at the 2016 8th International Conference on Information Technology in Medicine and Education (ITME).
MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological methods, 4(1), 84-99. doi:10.1037/1082-989X.4.1.84
Nielsen, J., & Landauer, T. K. (1993). A mathematical model of the finding of usability problems. Paper presented at the Proceedings of the INTERACT'93 and CHI'93 conference on Human factors in computing systems.
Nuovo, A. D., Varrasi, S., Conti, D., Bamsforth, J., Lucas, A., Soranzo, A., & McNamara, J. (2019). Usability Evaluation of a Robotic System for Cognitive Testing. Paper presented at the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
Plummer, J. T. (1974). The Concept and Application of Life Style Segmentation. Journal of Marketing, 38(1), 33-37. doi:10.2307/1250164
Plummer, J. T. (1974). The Concept and Application of Life Style Segmentation: The Combination of two Useful Concepts Provides a Unique and Important View of the Market. Journal of Marketing, 38(1), 33-37.
Prasad, B. (1998). Review of QFD and related deployment techniques. Journal of manufacturing Systems, 17(3), 221-234.
Puerta, A., Micheletti, M., & Mak, A. (2005). The UI pilot: a model-based tool to guide early interface design. Paper presented at the Proceedings of the 10th international conference on Intelligent user interfaces.
Ra, M., Muhammad, M. S., Lim, C., Han, S., Jung, C., & Kim, W. (2018). Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1-11. doi:10.1109/JTEHM.2017.2765631
Raheel, S. (2016). Improving the user experience using an intelligent Adaptive User Interface in mobile applications. Paper presented at the 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET).
Rettig, M. (1994). Prototyping for tiny fingers. Communications of the ACM, 37(4), 21-27.
Saidi, T., Mutswangwa, C. T., & Douglas, T. S. (2019). Design Thinking as a Complement to Human Factors Engineering for Enhancing Medical Device Usability. Engineering Studies, 11(1), 34-50. doi:10.1080/19378629.2019.1567521
Sauer, J., & Sonderegger, A. (2009). The influence of prototype fidelity and aesthetics of design in usability tests: Effects on user behaviour, subjective evaluation and emotion. Applied ergonomics, 40(4), 670-677.
Schuman, H., & Presser, S. (1979). The open and closed question. American sociological review, 692-712.
Sobel, M. E. (2013). Lifestyle and social structure: Concepts, definitions, analyses: Elsevier.
Stoutz, S., Chen, C., Broscheid, K., & Schega, L. (2019). User acceptance and Usability of a home based gait analysis system. Paper presented at the Smart SysTech 2019; European Conference on Smart Objects, Systems and Technologies.
Thirumalai, S., & Sinha, K. K. (2011). Product Recalls in the Medical Device Industry: An Empirical Exploration of the Sources and Financial Consequences. Management Science, 57(2), 376-392. Retrieved from http://www.jstor.org/stable/41060724
Vance, A., Lowry, P. B., & Eggett, D. (2015). Increasing accountability through user-interface design artifacts: a new approach to addressing the problem of access-policy violations. MIS Q., 39(2), 345-366. doi:10.25300/misq/2015/39.2.04
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2), 129-133. doi:10.1080/00031305.2016.1154108
Widaman, K. F. (1993). Common factor analysis versus principal component analysis: Differential bias in representing model parameters? Multivariate behavioral research, 28(3), 263-311. doi:10.1207/s15327906mbr2803_1
Wulandari, E., Effendy, V., & Wisudiawan, G. A. A. (2018). Modeling User Interface of First-Aid Application Game Using User Centered Design (UCD) Method. Paper presented at the 2018 6th International Conference on Information and Communication Technology (ICoICT).
Zwicky, F. (1948). Morphological astronomy. The observatory, 68, 121-143.
校內:2024-03-20公開