| 研究生: |
林季鴻 Lin, Chi-hon |
|---|---|
| 論文名稱: |
硼氫化鈉反應管式產氫裝置設計研究 Reaction Chamber Type Hydrogen Generation Device via Sodium Borohydride |
| 指導教授: |
賴維祥
Lai, Wei-hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 背壓 、產氫裝置 、硼氫化鈉 、化學氫 、燃料電池 |
| 外文關鍵詞: | Chemical Hydride, Sodium Borohydride, Fuel Cell, Back Pressure, Hydrogen Generation Device |
| 相關次數: | 點閱:126 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC)的快速發展,刺激了其原料氫氣於供應領域上的研究。硼氫化鈉水解產氫能夠產出高純度之氫氣,在燃料的填充上也有便利性,是能有效的利用於小型或移動式PEMFC之氫氣供應系統。硼氫化鈉無毒性、穩定、安全,非常適合作為氫氣供應之原料。本研究的目的為設計一體積小、重量輕、氫氣產率與轉化率高的硼氫化鈉水解產氫模組,體積約200 ml,內部包含燃料加熱之熱交換段,以提昇氫氣產率,預計提供給1kW燃料電池使用。並研究硼氫化鈉溶液進料率、硼氫化鈉濃度、氫氧化鈉濃度、以及系統背壓對於氫氣產率與轉化率的影響。研究結果發現,提昇硼氫化鈉進料率會提昇氫氣產率,但會降低氫氣轉化率;提昇硼氫化鈉濃度會提昇氫氣產率,但會減少氫氣轉化率,於硼氫化鈉濃度20 wt%有氫氣產率最佳值;提昇氫氧化鈉濃度會降低氫氣產率與轉化率,但溶液中無氫氧化鈉則會使其發生水解產氫反應產生氣泡,影響反應艙內氫氣產生;提昇系統背壓則會使系統溫度上升,增加氫氣產率。於硼氫化鈉溶液進料率100 g/min、硼氫化鈉濃度20 wt%、氫氧化鈉濃度4 wt%、系統背壓8 kg/cm2之操作環境下有氫氣產生最大值24SLPM,足以供應1kW燃料電池使用。
In recent years, fast development of the proton exchange membrane fuel cell (PEMFC) excite the research of the hydrogen supply field. Sodium Borohydride is the hydrogen supply method, which can generate high purity hydrogen, can be employed on small scale PEMFC. When the system is working, it is also convenient for fueling up the hydrogen storage device. Sodium borohydride is nontoxic, stable, safe, and is one of the best material to generate the hydrogen. In this study, a hydrogen generation device via sodium borohydride is designed, which is targeted for small scale, low weight, high hydrogen generation rate and high hydrogen yield ratio. This design includes the fuel heating section to raise the hydrogen generation rate up to 24 SLPM.
The result of study is found that increasing the feeding rate of sodium borohydride solution can raise the hydrogen generation rate, but reduce the hydrogen yield ratio. Increasing the concentration of sodium borohydride can raise the hydrogen generation rate, but there is optimum at 20wt%, and the hydrogen yield ratio is reduced. Increasing the concentration of sodium hydroxide will reduce both the hydrogen generation rate and the yield ratio, but hydrolysis will have a reverse effect on the system while there is no sodium hydroxide in the solution. Increasing the system back pressure can raise both the hydrogen generation rate and the yield ratio. When the feeding rate is 100 g/min, the concentration of sodium borohydride is 20 wt%, the concentration of sodium hydroxide is 4 wt% and the system back pressure is 8 kg/cm2, with the maximum generation rate of 24 SLPM.
1. サンシャイン計画|太陽光発電の教科書, http://solarsystem-history.com/history/his_1974.html.
2. We-Net Homepage, http://www.enaa.or.jp/WE-NET/.
3. 黃鎮江, “燃料電池,” 全華圖書股份有限公司, 2007.
4. William Robert Grove - Wikipedia, the Free Encyclopedia, http://en.wikipedia.org/wiki/Sir_William_Grove.
5. Christian Friedrich Schönbein - Wikipedia, the Free Encyclopedia, http://en.wikipedia.org/wiki/Christian_Friedrich_Sch%C3%B6nbein.
6. 曲新生, 陳發林, 呂錫民, “產氫與儲氫技術,” 五南圖書出版有限公司, 2007.
7. Marrero-Alfonso, E. Y., Beaird, A. M., Davis, T. A., Matthews, M. A., “Hydrogen Generation from Chemical Hydrides,” Industrial & Engineering Chemistry Research, 48: p. 3703-3712, 2009.
8. Kojima, Y., Kawai, Y., Kimbara, M., Nakanishi, H., Matsumoto, S., “Hydrogen Generation by Hydrolysis Reaction of Lithium Borohydride,” International Journal of Hydrogen Energy, 29: p. 1213-1217, 2004.
9. Wu, Y., “Hydrogen Storage Via Sodium Borohydride, Current Status, Barriers, and R&D Roadmap,” in GCEP, Stanford University, 2003.
10. Doe Hydrogen Program, http://www.hydrogen.energy.gov/.
11. Zhang, J., Fishera, T. S., Gorea, J. P., Hazrab, D., Ramachandranb, P. V., “Heat of Reaction Measurements of Sodium Borohydride Alcoholysis and Hydrolysis,” International Journal of Hydrogen Energy, 31: p. 2292-2298, 2006.
12. Kreevoy, M. M., Jacobson, R. W., “The Rate of Decomposition of Nabh4 in Basic Aqueous Solutions,” Ventron Alembic., 15: p. 2-3, 1979.
13. Moon, G. Y., Lee, S. S., Lee, K. Y., Kim, S. H., Song, K. H., “Behavior of Hydrogen Evolution of Aqueous Sodium Borohydride Solutions,” Journal of Industrial and Engineering Chemistry, 14: p. 94-99, 2008.
14. Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., Hayashi, H., “Hydrogen Generation Using Sodium Borohydride Solution and Metal Catalyst Coated on Metal Oxide,” International Journal of Hydrogen Energy, 27: p. 1029-1034, 2002.
15. 洪學斌, 王業權, “NaBH4 水解製氫技術,” 化學工業與工程, 22: p. 467-471, 2005.
16. Kojima, Y., Haga, T., “Recycling Process of Sodium Metaborate to Sodium Borohydride,” International Journal of Hydrogen Energy, 28: p. 989-993, 2003.
17. Li, Z. P., Morigazaki, N., Liu, B. H., Suda, S., “Preparation of Sodium Borohydride by the Reaction of Mgh with Dehydrated Borax through Ball Milling at Room Temperature,” Journal of Alloys and Compounds, 349, 2003.
18. Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Spencer, N. C., Kelly, M. T., Petillo, P. J., Binder, M., “A Safe, Portable, Hydrogen Gas Generator Using Aqueous Borohydride Solution and Ru Catalyst,” International Journal of Hydrogen Energy, 25: p. 969-975, 2000.
19. Pinto, A. M. F. R., Falcão, D. S., Silva, R. A., Rangel, C. M., “Hydrogen Generation and Storage from Hydrolysis of Sodium Borohydride in Batch Reactors,” International Journal of Hydrogen Energy, 31: p. 1341-1347, 2006.
20. Murugesan, S., Subramanian, V. R., “Effects of Acid Accelerators on Hydrogen Generation from Solid Sodium Borohydride Using Small Scale Devices,” Journal of Power Sources, 187(216-223), 2009.
21. Kojima, Y., Suzuki, K., Fukumotoa, K., Kawai, Y., Kimbara, M., Nakanish, H., Matsumoto, S., “Development of 10 kW-Scale Hydrogen Generator Using Chemical Hydride,” Journal of Power Sources, 125: p. 22-26, 2004.
22. Richardson, B. S., Birdwell, J. F., Pin, F. o. G., Jansen, J. F., Lind, R. F., “Sodium Borohydride Based Hybrid Power System,” Journal of Power Sources, 145: p. 21-29, 2005.
23. Kim, S. J., Lee, J., Kong, K. Y., Jung, C. R., Mina, I. G., Lee, S. Y., Kim, H. J., Nam, S. W., Lima, T. H., “Hydrogen Generation System Using Sodium Borohydride for Operation of a 400w-Scale Polymer Electrolyte Fuel Cell Stack,” Journal of Power Sources, 170: p. 412-418, 2007.
24. Zhang, Q., Smith, G. M., Y.Wu, “Catalytic Hydrolysis of Sodium Borohydride in an Integrated Reactor for Hydrogen Generation,” International Journal of Hydrogen Energy, 32: p. 4731-4735, 2007.
25. Zhang, Q., Wu, Y., Smith, G. M., Binder, M., Hydrogen Generation Catalysts and Systems for Hydrogen Generation 2006: US Patent : 20060293173
26. Zhang, J., Zheng, Y., Gore, J. P., Fisher, T. S., “1 Kwe Sodium Borohydride Hydrogen Generation System,” Journal of Power Sources, 165: p. 844-853, 2007.
27. Gislon, P., Monteleone, G., Prosini, P. P., “Hydrogen Production from Solid Sodium Borohydride,” International Journal of Hydrogen Energy, 34(2): p. 929-937, 2008.
28. 日本化學工學協會, “化工程序機器構造設計叢書1. 熱交換器,” 日本化學工學協會, 1980.
29. 落合安太郎, “熱交換器,” 日刊工業新聞社, 1975.
30. 孫逸民, “儀器分析,” 全威圖書有限公司, 2000.
31. Hardy, B., “Its-90 Formulations for Vapor Pressure, Frostpoint Temperature, Dewpoint Temperature, and Enhancement Factors in the Range –100 to +100 C,” in The Proceedings of the Third International Symposium on Humidity & Moisture, Teddington, London, England,, 1998.