| 研究生: |
何濟良 Antoni H Wibowo |
|---|---|
| 論文名稱: |
離岸風機套管式基礎灌漿接合之疲勞設計與最佳化 Fatigue Design and Optimization of Grouted Connection in Jacket-Type Offshore Wind Turbine Structures |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 共同指導教授: |
朱聖浩
Ju, Shen-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 391 |
| 外文關鍵詞: | grouted connection, time-history fatigue design, finite element analysis, design optimization, design recommendations |
| 相關次數: | 點閱:152 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
灌漿連接一直是海上結構的樁與上部結構(過渡件、套管或護套腿)連接的主要選擇。該技術已廣泛用於油氣結構,並出口海上風力渦輪機結構。自申請開始以來,由於兩者之間的根本差異,出現了許多問題。出現問題之一是因為灌漿連接比石油和天然氣結構更容易受到彎曲和剪切。這些彎曲和剪切是由更深的水(因此更大的水平載荷)、更大的結構和構件尺寸以及更高的材料強度引起的。當轉移到底部構件時,彎曲的顯著發生導致滑動。這種滑動比實施設計規範時估計的要大得多,並且隨著直徑的增加(尺寸效應)進一步變得更加嚴重。來自 DNV 的較新設計規範現在通過使用許多使代碼相當複雜和幼稚的解決方案來解決這些問題。因此,它仍然缺乏將代碼納入進一步驗證和改進的研究。本研究使用最新的 DNV 代碼在 Fortran 編程語言下並基於 IEC 61400-3-1 中的設計載荷工況創建時程疲勞設計程序。設計涉及參數研究,以確定要設計的主要設計變量。此外,遺傳算法用於優化設計並為彎曲和剪切受控情況提供設計建議。
The grouted connection has been the major choice for connecting the pile and upper structure (transition piece, sleeve, or jacket leg) of offshore structures. The technology has been widely used for oil and gas structures and exported for offshore wind turbine structures. Since the beginning of the application, many issues have occurred due to fundamental differences between the two. One of the issues arose because grouted connections are more subjected to bending and shear than oil and gas structures. These bending and shear were caused by deeper water (hence larger horizontal loads), larger structures and member sizes, and higher material strength. The significant occurrence of bending causes sliding when transferred to bottom members. This sliding was considerably larger than what used to be estimated when design codes were implemented and further gets more severe as the diameter increases (size effect). The newer design code from DNV now adheres to these issues by using numerous solutions that make the code rather complicated and juvenile. Hence, it still lacks studies incorporating the code for further validation and improvements. This study uses the newest DNV code to create a time-history fatigue design program under Fortran programming language and based on design load cases in IEC 61400-3-1. The design involves a parametric study to decide the main design variable to be designed. Further, a genetic algorithm is used to optimize the design and provide design recommendations for bending and shear controlled cases.
Adeli, H., & Sarma, K. (2006). Cost optimization of structures: fuzzy logic, genetic algorithms, and parallel computing. Wiley.
AET. Wind turbine generator. Alternative Energy Tutorial. Retrieved Apr 04 from https://www.alternative-energy-tutorials.com/wind-energy/wind-turbine-generator.html
Afework, B., Hanania, J., Stenhouse, K., & Donev, J. (2018). Betz limit. Energy Education, University of Calgary. Retrieved Apr 04 from https://energyeducation.ca/encyclopedia/Betz_limit
Agarwal, T., Verma, S., & Gaurh, A. (2016). Issues and challenges of wind energy 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT),
Alrikabi, N. K. M. A. (2014). Renewable energy types. Journal of Clean Energy Technologies, 61-64. https://doi.org/10.7763/jocet.2014.V2.92
API. (1977). RP2A Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute.
API. (1984). RP2A Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute.
API. (1986). RP2A Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute.
API. (2000). RP 2A-WSD Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design. American Petroleum Institute.
API. (2007). RP 2A-WSD Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design. American Petroleum Institute.
API. (2014). RP 2A-WSD Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design. American Petroleum Institute.
Apunda, M. O. N., Benard Oloo (2017, 31 July 2017). Challenges and opportunities of wind energy technology [Journal Article]. International Journal of Development Research, 07(07), 4. https://doi.org/10.13140/RG.2.2.15229.82403
Arany, L., Bhattacharya, S., Macdonald, J., & Hogan, S. J. (2015). Simplified critical mudline bending moment spectra of offshore wind turbine support structures. Wind Energy, 18(12), 2171-2197. https://doi.org/10.1002/we.1812
Arfiadi, Y. (2016). Operator kawin silang pada algoritma genetik riil untuk variabel rencana selalu positif. Jurnal Ilmu Terapan Bidang Teknik Sipil 22(2). https://doi.org/https://doi.org/10.14710/mkts.v22i2.12883
Arfiadi, Y., & Hadi, M. (2001). Optimal direct (static) output feedback controller using real coded genetic algorithms. Computers & Structures 79(17). https://doi.org/https://doi.org/10.1016/S0045-7949(01)00041-4
Aritenang, W., Elnashai, A. S., & Dowling, P. J. (1992). Analysis-based design equations for composite tubular connections. Engineering Structures, 14(3), 195-204. https://doi.org/https://doi.org/10.1016/0141-0296(92)90031-K
Aritenang, W., Elnashai, A. S., Dowling, P. J., & Caroll, B. C. (1990). Failure mechanisms of weld-beaded grouted pile/sleeve connections. Marine Structures, 3, 391-417. https://doi.org/https://doi.org/10.1016/0951-8339(90)90011-F
Arshad, M., & O’Kelly, B. C. (2013). Offshore wind-turbine structures: a review. Proceedings of the Institution of Civil Engineers - Energy, 166(4), 139-152. https://doi.org/10.1680/ener.12.00019
Arshad, M., & O’Kelly, B. C. (2015). Analysis and design of monopile foundations for offshore wind turbine structures. Marine Georesources & Geotechnology, 34(6), 503-525. https://doi.org/10.1080/1064119x.2015.1033070
ASTM. (2008). ASTM A 709/709M Standard specification for structural steel for bridges. American Society for Testing Materials.
Austin, S., & Jerath, S. (2017). Effect of soil-foundation-structure interaction on the seismic response of wind turbines. Ain Shams Engineering Journal, 8(3), 323-331. https://doi.org/10.1016/j.asej.2017.05.007
Baskar, S., Subbaraj, P., & Rao, M. (2001). Performance of hybrid real coded genetic algorithms. International Journal of Computational Engineering Science 2(2). https://doi.org/https://doi.org/10.1142/S1465876301000465
Billington, C. J. (1978). The strength of large diameter grouted connections. Offshore Technology Conference, Texas, The United States of America.
Billington, C. J., & Tebbett, I. E. (1980). The basis for new design formulae for grouted jacket to pile connections. Offshore Technology Conference, Texas, The United States of America.
Billington, C. J., & Tebbett, I. E. (1982). Fatigue strength of grouted tubular steel connections for offshore structures. https://doi.org/10.5169/seals-28963
Bortolotti, P., Kapila, A., & Bottasso, C. L. (2019). Comparison between upwind and downwind designs of a 10 MW wind turbine rotor. Wind Energy Science, 4(1), 115-125. https://doi.org/10.5194/wes-4-115-2019
Brnic, J., Canadija, M., Turkalj, G., & Lanc, D. (2010). Structural steel ASTM A709—Behavior at uniaxial tests conducted at lowered and elevated temperatures, short-time creep response, and fracture toughness calculation. 136(9), 7. https://doi.org/10.1061/共ASCE兲EM.1943-7889.0000152
Cao, W., Xie, Y., & T, Z. (2012). Wind Turbine Generator Technologies. In Advances in Wind Power. https://doi.org/10.5772/51780
Chen, H.-H., Yang, R.-Y., Hsiao, S.-C., & Hwung, H.-H. (2019). Experimental study of scour around monopile and jacket-type offshore wind turbine foundations. Journal of Marine Science and Technology, 27(2), 10. https://doi.org/10.6119/JMST.201904_27(2).0002
Chen, T., Li, Z., Wang, X., Yuan, G., & Liu, J. (2018). Experimental study on ultimate bending performance of grouted connections in offshore wind turbine support structures. Thin-Walled Structures, 132, 522-536. https://doi.org/10.1016/j.tws.2018.09.025
Chen, T., Wang, X., Gu, X., Zhao, Q., Yuan, G., & Liu, J. (2019). Axial compression tests of grouted connections in jacket and monopile offshore wind turbine structures. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109330
Chen, T., Wang, X., Yuan, G., & Liu, J. (2018). Fatigue bending test on grouted connections for monopile offshore wind turbines. Marine Structures, 60, 52-71. https://doi.org/10.1016/j.marstruc.2018.03.005
Cheng, P. W. (2002). Reliability based design methodology for extreme response of offshore wind turbine Delft University]. The Netherlands.
Chuang, Y., Chen, C., & Hwang, C. (2016). A simple and efficient real-coded genetic algorithm for constrained optimization. Applied Soft Computing, 38, 87-105. https://doi.org/https://doi.org/10.1016/j.asoc.2015.09.036
Clark, R. N. (2012). Small wind: planning and building successful installations. Elsevier.
Collins, D. (2021). What are multi-stage gearboxes and when are they used? Motion Control Tips. Retrieved Apr 04 from https://www.motioncontroltips.com/what-are-multi-stage-gearboxes-and-when-are-they-used/
Dallyn, P., El-Hamalawi, A., Palmeri, A., & Knight, R. (2015). Experimental testing of grouted connections for offshore substructures: A critical review. Structures, 3, 90-108. https://doi.org/10.1016/j.istruc.2015.03.005
DEn. (1982). Report of the working party on the strength of grouted pile-sleeve connections for offshore structures. Department of Energy.
DEn. (1984). Guidance on the design and construction of offshore installation. Department of Energy.
DNV. (2007). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.
DNV. (2010a). DNV-OS-C502 Offshore concrete structures. Det Norske Veritas.
DNV. (2010b). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.
DNV. (2011). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.
DNV. (2013). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.
DNV. (2014). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.
DNVGL. (2016). DNV-ST-0126 Support structures for wind turbines. DNV GL AS.
DNVGL. (2018a). DNV-ST-0126 Support structures for wind turbines. DNV GL AS.
DNVGL. (2018b). DNV-ST-C502 Offshore concrete structures. Det Norske Veritas.
DNVGL. (2019). DNV-OS-B101 Metallic materials. Det Norske Veritas.
DWIA. (2003a). Wind turbines: how many blades? Danish Wind Energy Association. Retrieved Apr 04 from http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/design/concepts.htm
DWIA. (2003b). Wind turbines: upwind or downwind machines? Danish Wind Energy Association. Retrieved Apr 04 from http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/design/updown.htm
Economics, T. (2021). Lumber. Trading Economics. Retrieved Nov 11 from https://tradingeconomics.com/commodity/lumber
EERE. (2021). Advantages and challenges of wind energy. US Department of Energy. Retrieved Mar 31 from https://www.energy.gov/eere/wind/advantages-and-challenges-wind-energy
EIA. (2021). Gasoline and diesel fuel update. U.S. Energy Information Administration. Retrieved Nov 21 from https://www.eia.gov/petroleum/gasdiesel/
Elins, R. (2019). Optimizing offshore foundation design choices. MBCC group. Retrieved Apr 04 from https://blog.master-builders-solutions.com/en/optimizing-offshore-foundation-design
Elnashai, A. S., & Aritenang, W. (1991). Nonlinear modelling of weld-beaded composite tubular connections. Engineering Structures, 13(1), 34-43. https://doi.org/https://doi.org/10.1016/0141-0296(91)90006-X
EN. (2005). EN 1993-1-1 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization.
Evans, A., Strezov, V., & Evans, T. J. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13(5), 1082-1088. https://doi.org/10.1016/j.rser.2008.03.008
Frans, R., & Arfiadi, Y. (2014). Sizing, shape, and topology optimizations of roof trusses using hybrid genetic algorithms. Procedia Engineering, 95, 185-195. https://doi.org/10.1016/j.proeng.2014.12.178
Gao, W. (2006). Interval Finite Element Analysis using Interval Factor Method. Computational Mechanics, 39(6), 709-717. https://doi.org/10.1007/s00466-006-0055-8
Geng, H., & Yang, G. (2014). Linear and nonlinear schemes applied to pitch control of wind turbines. ScientificWorldJournal, 2014, 406382. https://doi.org/10.1155/2014/406382
Glassdoor. (2021). Contruction worker salaries United States. Glassdoor. Retrieved Nov 21 from https://www.glassdoor.com/Salaries/construction-worker-salary-SRCH_KO0,19.htm
Goudarzi, N., & Zhu, W. D. (2013). A review on the development of wind turbine generators across the world. International Journal of Dynamics and Control, 1(2), 192-202. https://doi.org/10.1007/s40435-013-0016-y
Harvey, P. D. (1982). Engineering properties of steel. ASM International.
He, J., Chen, C., Yang, Z., Tian, H., Li, S., & Wang, D. (2017). Load spectrum generation of machining center based on rainflow counting method. Journal of Vibroengineering, 19(8), 5767-5779. https://doi.org/10.21595/jve.2017.18423
Hu, W. (2018). Advanced wind turbine technology. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-78166-2
IEC. (2019a). 61400-1 Wind energy generation systems - Part1: Design requirements. International Electronical Commision.
IEC. (2019b). 61400-3-1 Wind energy generation systems – Part 3-1: Design requirements for fixed offshore wind turbines. International Electrotechnical Commission.
Igwemezie, V., Mehmanparast, A., & Kolios, A. (2018). Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Marine Structures, 61, 381-397. https://doi.org/10.1016/j.marstruc.2018.06.008
IRENA. (2012). Renewable energy technologies cost analysis series. International Renewable Energy Agency.
IRENA. (2019). Future of wind. International Renewable Energy Agency.
ISO. (2007). 19902 Petroleum and natural gas industries — Fixed steel offshore structures. International Organization for Standardization.
ISO. (2020). 19902 Petroleum and natural gas industries — Fixed steel offshore structures. International Organization for Standardization.
Jain, S., Bisht, D., & Mathpal, P. (2013). Comparative analysis of real and binary coded genetic algorithm for fuzzy time series prediction Emerging Trends in Computational and Applied Mathematics, Gurgaon, India.
Jenkins, W. M. (1991). Technical note towards structural optimization via the genetic algorithm. Computers & Structures, 40(5), 8. https://doi.org/https://doi.org/10.1016/0045-7949(91)90402-8
Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., & Zhang, D.-M. (2016). A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Problems in Science and Engineering, 25(9), 1343-1366. https://doi.org/10.1080/17415977.2016.1259315
Johansen, A., Solland, G., Lervik, A., Strande, M., & Nybø, T. (2018). Testing of jacket pile sleeve grouted connections exposed to variable axial loads. Marine Structures, 58, 254-277. https://doi.org/10.1016/j.marstruc.2017.11.005
Ju, S.-H., & Huang, Y.-C. (2020). MTMD to increase fatigue life for OWT jacket structures using Powell's method. Marine Structures, 71. https://doi.org/10.1016/j.marstruc.2020.102726
Ju, S.-H., Su, F.-C., Ke, Y.-P., & Xie, M.-H. (2019). Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme. Renewable Energy, 136, 69-78. https://doi.org/10.1016/j.renene.2018.12.071
Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C., & Mikkelsen, K. K. (2015, Feb 28). Optimization of monopiles for offshore wind turbines. Philos Trans A Math Phys Eng Sci, 373(2035). https://doi.org/10.1098/rsta.2014.0100
Karsan, D. I., & Krahl, N. W. (1984). New API equation for grouted pile-to-structure connections. Offshore Technology Conference, Texas, The United States of America.
Keene, M. (2021). Comparing offshore wind turbine foundations. Windpower Engineering & Development. Retrieved Apr 04 from https://www.windpowerengineering.com/comparing-offshore-wind-turbine-foundations/
Kerrigan, S. (2018). The scientific reason why wind turbines have 3 blades. Interesting Engineering, Inc. Retrieved Apr 04 from https://interestingengineering.com/the-scientific-reason-why-wind-turbines-have-3-blades#
Krahl, N. W., & Karsari, D. I. (1985). Axial strength of grouted pile-to-sleeve connections. Journal of Structural Engineering, 111(4). https://doi.org/https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(889)
Kravanja, S., & Žula, T. (2013). Cost optimization of structures in civil engineering Proceedings of the New Developments in Structural Engineering and Construction
Kuijen, K. V. Turbine topologies, number of blades. TUDelft. Retrieved Apr 04 from http://mstudioblackboard.tudelft.nl/duwind/Wind%20energy%20online%20reader/Static_pages/blades_number.htm
Kuijen, K. V. Turbine topologies, type of hub. TUDelft. Retrieved Apr 04 from http://mstudioblackboard.tudelft.nl/duwind/Wind%20energy%20online%20reader/Static_pages/hub_type.htm
Kuijen, K. V. Turbine topologies, upwind/downwind machines. TUDelft. Retrieved Apr 04 from http://mstudioblackboard.tudelft.nl/duwind/Wind%20energy%20online%20reader/Static_pages/upwind_downwind.htm
Kumar, A., Khan, M. Z. U., & Pandey, B. (2018). Wind Energy: A Review Paper. Gyancity Journal of Engineering and Technology, 4(2), 29-37. https://doi.org/10.21058/gjet.2018.42004
Kuri-Morales, A., & Gutiérrez-García, J. (2002). Penalty function methods for constrained optimization with genetic algorithms: a statistical analysis Mexican International Conference on Artificial Intelligence, Mexico.
Lamport, W. B., Jirsa, J. O., & Yura, J. A. (1991). Strength and behavior of grouted pile-to-sleeve connections. Journal of Structural Engineering, 117(8). https://doi.org/https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2477)
Larwood, S. M. C., R.;. (2016). Comparison of upwind and downwind operation of the NREL Phase VI Experiment. Journal of Physics: Conference Series, 753(022041). https://doi.org/doi:10.1088/1742-6596/753/2/022041
Lazard. (2019). Lazard’s levelized cost of energy analysis — version 13.0. Lazard.
Lee, Y.-L., & Tjhung, T. (2012). Rainflow cycle counting techniques. In Metal Fatigue Analysis Handbook (pp. 89-114). https://doi.org/10.1016/b978-0-12-385204-5.00003-3
Lotsberg, I. (2013). Structural mechanics for design of grouted connections in monopile wind turbine structures. Marine Structures, 32, 113-135. https://doi.org/10.1016/j.marstruc.2013.03.001
Lotsberg, I., Serednicki, A., Lervik, A., & Bertnes, H. (2012). Design of grouted connections for monopile offshore structures. Stahlbau, 81(9), 695-704. https://doi.org/10.1002/stab.201201598
Lotsberg, I. S., Andrzej; Cramer, Espen; Bertnes, Håkon; Haahr, Per Enggaard. (2011, Oct 31, 2011). On the structural capacity of grouted connections in offshore structures. 30th international conference on offshore mechanics and arctic engineering (OMAE 2011), Rotterdam, Netherlands.
Lotsberg, I. S., Gunnar. (2013, 9-14 June 2013). Assessment of capacity of grouted connections in piled jacket structures. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France.
Lu, K., Zeng, G., Chen, J., Peng, W., Zhang, Z., Dai, Y., & Wu, Q. (2013). Comparison of binary coded genetic algorithms with different selection strategies for continuous optimization problems. Chinese automation congress Chinese Automation Congress, Changsha, China.
Luecke, W. E., McColskey, J. D., McCowan, C. N., Banovic, S. W., Fields, R. J., Foecke, T., Siewert, T. A., & Gayle, F. W. (2005). NIST NCSTAR1 - 3D Mechanical properties of structural steels. National Institute of Standards and Technology.
LuvSide. (2020a). Generators for wind turbine applications – part 1: the basics. LuvSide. Retrieved Apr 04 from https://www.luvside.de/en/generator-basics/
LuvSide. (2020b). Generators for wind turbine applications – part 2: how to pick one. LuvSide. Retrieved Apr 04 from https://www.luvside.de/en/generators-how-to-pick-one/
Marion, S., Johansen, A., Solland, G., & Nybø, T. (2018). Testing of jacket pile sleeve grouted connections exposed to shear forces and bending moments. Marine Structures, 59, 401-422. https://doi.org/10.1016/j.marstruc.2018.02.008
MatWeb. ASTM A709 Steel, grade 50 and 50W, ≤ 100 mm. MatWeb. Retrieved Aug 05 from http://www.matweb.com/search/datasheet_print.aspx?matguid=9ccae9a8aeca4739b63ca27f2dc24970
Mihet-Popa, L. G., Voicu. (2010). Dynamic modeling, simulation and control strategies for 2 MW wind generating systems. International Review of Modelling and Simulations IREMOS, 5, 1410-1418.
Mohtasham, J. (2015). Review article - Renewable energies. Energy Procedia, 74, 1289-1297. https://doi.org/10.1016/j.egypro.2015.07.774
Nigdeli, S. M., Bekdaş, G., & Yang, X.-S. (2018). Metaheuristic optimization of reinforced concrete footings. KSCE Journal of Civil Engineering, 22(11), 4555-4563. https://doi.org/10.1007/s12205-018-2010-6
NORSOK. (2004). N-004 Design of steel structures. Standard Norway.
NORSOK. (2013). N-004 Design of steel structures. Standard Norway.
NORSOK. (2021). N-004 Design of steel structures. Standard Norway.
NREL. (2021). OpenFAST documentation. National Renewable Energy Laboratory.
Paalsgard. (2021). UN SDG support. Paalsgard. Retrieved Mar 27 from https://www.palsgaard.com/en/responsibility/un-global-compact-goals/un-sdg-support
Pattanaik, J. K., Basu, M., & Dash, D. P. (2018). Improved real coded genetic algorithm for dynamic economic dispatch. Journal of Electrical Systems and Information Technology, 5(3), 349-362. https://doi.org/10.1016/j.jesit.2018.03.002
Perry, M. J., Koh, C. G., & Choo, Y. S. (2006). Modified genetic algorithm strategy for structural identification. Computers & Structures, 84(8-9), 529-540. https://doi.org/10.1016/j.compstruc.2005.11.008
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes - The art of scientific computing 3rd edition. Cambridge University Press.
Saidur, R., Rahim, N. A., Islam, M. R., & Solangi, K. H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5), 2423-2430. https://doi.org/10.1016/j.rser.2011.02.024
Sandal, K., & Zania, V. (2016). Optimization of pile design for offshore wind turbine jacket foundations 12th EAWE PhD Seminar on Wind Energy, Denmark.
Sarma, K. C., & Adeli, H. (2000). Cost optimization of steel structures. Engineering Optimization, 32(6), 777-802. https://doi.org/10.1080/03052150008941321
Schaumann, P., Lochte-Holtgreven, S., & Bechtel, A. (2010). Fatigue design for axially loaded grouted connections of offshore wind turbine support structures in deeper waters. Earth and Space 2010: 12th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Honolulu, Hawaii.
Schaumann, P., & Raba, A. (2015). Systematic testing of the fatigue performance of submerged small-scale grouted joints. 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland, Canada.
Schaumann, P., Raba, A., & Bechtel, A. (2014a). Experimental fatigue tests on axially loaded grouted joints International Wind Engineering Conference, Hanover, Germany.
Schaumann, P., Raba, A., & Bechtel, A. (2014b). Fatigue behaviour of axial loaded grouted joints in Tests. Berichte aus dem Institut für Baustoffe, 12, 219-226.
Schaumann, P., Raba, A., & Bechtel, A. (2017). Fatigue behaviour of grouted connections at different ambient conditions and loading scenarios. Energy Procedia, 137, 196-203. https://doi.org/10.1016/j.egypro.2017.10.373
Schaumann, P., & Wilke, F. (2006). Fatigue of grouted joint connections 8th German Wind Energy Conference, Bremen, Germany.
Schaumann, P., & Wilke, F. (2007). Design of large diameter hybrid connections grouted with high performance concrete. International Offshore and Polar Engineering Conference, Lisbon, Portugal.
Sohoni, V., Gupta, S. C., & Nema, R. K. (2016). A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems. Journal of Energy, 2016, 1-18. https://doi.org/10.1155/2016/8519785
Solanki, C., Thapliyal, P., & Tomar, K. (2014). Role of bisection method. International Journal of Computer Applications Technology and Research, 3(8), 535 - 535.
Solland, G., & Johansen, A. (2018). Design recommendations for grouted pile sleeve connections. Marine Structures, 60, 1-14. https://doi.org/10.1016/j.marstruc.2018.03.001
Suli, E., & Mayers, D. F. (2003). An introduction to numerical analysis. Cambridge Univeristy Press.
Talaslioglu, T. (2019). Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology. Frontiers of Structural and Civil Engineering, 13(4), 863-889. https://doi.org/10.1007/s11709-019-0523-9
Technology, W. W. Monopile foundations with flanged connections - Monopile foundations with flanged connections. Progressive Media International. Retrieved Apr 04 from https://www.windpower-international.com/contractors/world-wind-technology/monopile-foundations-with-flanged-connections
Thompson, M. P., Hamann, J. D., & Sessions, J. (2009). Selection and penalty strategies for genetic algorithms designed to solve spatial forest planning problems. International Journal of Forestry Research, 2009, 1-14. https://doi.org/10.1155/2009/527392
Thresher, R. R., Michael; Veers, Paul. (2008). Wind energy technology Current status and R&D future Physics of Sustainable Energy Conference, Berkeley, United States.
Tziavos, N. I., Hemida, H., Metje, N., & Baniotopoulos, C. (2016). Grouted connections on offshore wind turbines: a review. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 169(4), 183-195. https://doi.org/10.1680/jencm.16.00004
UN. (2021). Sustainable development goals. United Nations. Retrieved Mar 27 from https://www.un.org/sustainabledevelopment/sustainable-development-goals/
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomaki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., & Wiser, R. (2019, Oct 25). Grand challenges in the science of wind energy. Science, 366(6464). https://doi.org/10.1126/science.aau2027
Walton, R. R., Jennifer; Ingram, Elizabeth. (2011). Direct drive vs. gearbox: progress on both fronts. Power Engineering, Clarion Energy Media. Retrieved Apr 04 from https://www.power-eng.com/renewables/direct-drive-vs-gearbox-progress-on-both-fronts/#gref
Wang, S.-H., & Chen, S.-H. (2010). Blade number effect for a ducted wind turbine. Journal of Mechanical Science and Technology, 22(10), 1984-1992. https://doi.org/10.1007/s12206-008-0743-8
Wang, X., Chen, T., Zhao, Q., Yuan, G., & Liu, J. (2016). Fatigue evaluation of grouted connections under bending moment in offshore wind turbines based on ABAQUS scripting interface. International Journal of Steel Structures, 16(4), 1149-1159. https://doi.org/10.1007/s13296-016-0050-7
Xianhui, Y., Zhaoqi, W., & Zehao, C. (2020). Comparison of prediction methods for axial strength of grouted connections with shear keys. Applied Sciences, 10(6). https://doi.org/10.3390/app10061942
Yang, X.-S., Deb, S., & Mishra, S. K. (2018). Multi-species cuckoo search algorithm for global optimization. Cognitive Computation, 10(6), 1085-1095. https://doi.org/10.1007/s12559-018-9579-4
Yang, X. (2014). Nature-inspired optimization algorithms (1st ed.). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-416743-8.00005-1
Yang, Y., & Soh, C. K. (2002). Automated optimum design of structures using genetic programming. Computers & Structures, 80, 10. https://doi.org/https://doi.org/10.1016/S0045-7949(02)00108-6
Zhou, Zhu, & Liu. (2019). A micropitting study considering rough sliding and mild wear. Coatings, 9(10). https://doi.org/10.3390/coatings9100639