簡易檢索 / 詳目顯示

研究生: 何濟良
Antoni H Wibowo
論文名稱: 離岸風機套管式基礎灌漿接合之疲勞設計與最佳化
Fatigue Design and Optimization of Grouted Connection in Jacket-Type Offshore Wind Turbine Structures
指導教授: 劉光晏
Liu, Kuang-Yen
共同指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 391
外文關鍵詞: grouted connection, time-history fatigue design, finite element analysis, design optimization, design recommendations
相關次數: 點閱:152下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 灌漿連接一直是海上結構的樁與上部結構(過渡件、套管或護套腿)連接的主要選擇。該技術已廣泛用於油氣結構,並出口海上風力渦輪機結構。自申請開始以來,由於兩者之間的根本差異,出現了許多問題。出現問題之一是因為灌漿連接比石油和天然氣結構更容易受到彎曲和剪切。這些彎曲和剪切是由更深的水(因此更大的水平載荷)、更大的結構和構件尺寸以及更高的材料強度引起的。當轉移到底部構件時,彎曲的顯著發生導致滑動。這種滑動比實施設計規範時估計的要大得多,並且隨著直徑的增加(尺寸效應)進一步變得更加嚴重。來自 DNV 的較新設計規範現在通過使用許多使代碼相當複雜和幼稚的解決方案來解決這些問題。因此,它仍然缺乏將代碼納入進一步驗證和改進的研究。本研究使用最新的 DNV 代碼在 Fortran 編程語言下並基於 IEC 61400-3-1 中的設計載荷工況創建時程疲勞設計程序。設計涉及參數研究,以確定要設計的主要設計變量。此外,遺傳算法用於優化設計並為彎曲和剪切受控情況提供設計建議。

    The grouted connection has been the major choice for connecting the pile and upper structure (transition piece, sleeve, or jacket leg) of offshore structures. The technology has been widely used for oil and gas structures and exported for offshore wind turbine structures. Since the beginning of the application, many issues have occurred due to fundamental differences between the two. One of the issues arose because grouted connections are more subjected to bending and shear than oil and gas structures. These bending and shear were caused by deeper water (hence larger horizontal loads), larger structures and member sizes, and higher material strength. The significant occurrence of bending causes sliding when transferred to bottom members. This sliding was considerably larger than what used to be estimated when design codes were implemented and further gets more severe as the diameter increases (size effect). The newer design code from DNV now adheres to these issues by using numerous solutions that make the code rather complicated and juvenile. Hence, it still lacks studies incorporating the code for further validation and improvements. This study uses the newest DNV code to create a time-history fatigue design program under Fortran programming language and based on design load cases in IEC 61400-3-1. The design involves a parametric study to decide the main design variable to be designed. Further, a genetic algorithm is used to optimize the design and provide design recommendations for bending and shear controlled cases.

    Abstract I Acknowledgement II Table of Contents III List of Tables IX List of Figures XII Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objectives 4 1.3 Research Procedure or Research Method and Process 4 1.4 Research Scope and Limitations 5 1.5 Acknowledgment 5 Chapter 2 Literature Review 6 2.1 Wind Energy 6 2.1.1 Background 6 2.1.2 Strengths 6 2.1.3 Weaknesses 8 2.2 Wind Turbines 9 2.2.1 Mechanics 9 2.2.2 Current Technologies 13 2.2.2.1 Wind Turbine Main Parts 13 2.2.2.2 Classifications 14 2.2.2.3 Offshore Wind Turbines (OWTs) 15 2.2.2.4 Rotor Placement 15 2.2.2.5 Number of Blades 16 2.2.2.6 Generator 16 2.2.2.7 Hub Connection 17 2.2.2.8 Gearbox Design 18 2.2.2.9 Speed and Control Technologies 19 2.2.2.10 Support Structures 20 2.3 Transition Piece (TP) 23 2.3.1 General 23 2.3.2 Pile-to-TP Connections 25 2.4 Grouted Connection Support Structure Types 26 2.5 Grouted Connection 28 2.6 Genetic Algorithm 39 Chapter 3 Design Codes and Guideline 42 3.1 OpenFAST 42 3.2 Design Criteria for Grouted Connection 43 3.2.1 API 43 3.2.2 ISO 45 3.2.2.1 Interface transfer stress 46 3.2.2.2 Interface transfer strength 47 3.2.2.3 Ranges of validity 48 3.2.2.4 Effects of movements during grout setting 48 3.2.2.5 Strength check 49 3.2.2.6 Fatigue assessment 50 3.2.3 NORSOK 50 3.2.3.1 Failure of grout due to pile interface shear from combined axial load and torsional moment 51 3.2.3.2 Failure of the grout due to compressive stresses due to bending moment and shear force 53 3.2.3.3 Fatigue of the grouted connection for alternating interface shear stress due to axial load and bending moment (ULS and ALS) 54 3.2.3.4 Fatigue of the grout due to compression and shear stresses due to bending moment and shear 56 3.2.3.5 Fatigue check due to torsion 56 3.2.3.6 Requirements to ribbed steel reinforcement 57 3.2.4 DNV GL 57 3.2.4.1 ULS for Tubular and Conical Plain Grouted Connections 58 3.2.4.2 Conical Grouted Connections in Monopiles Without Shear Keys 60 3.2.4.3 ULS for Grouted Connections in Monopile with Shear Keys 62 3.2.4.4 ULS for Grouted Connections in Jacket Structures with Shear Keys 65 3.2.4.5 ULS of Torque for Grouted Connections with Shear Keys 70 3.2.4.6 FLS for Grouted Connections with Shear Keys 71 3.2.4.7 FLS for Grouted Connections in Monopiles with Shear Keys 73 3.2.4.8 FLS for Grouted Connections in Jacket Structures with Shear Keys 73 3.2.5 Comparison and Selection 73 3.3 Design Load Cases for Offshore Wind Turbine 75 3.3.1 Terms 75 3.3.1.1 Wind Condition 75 3.3.1.2 Waves 79 3.3.1.3 Wind and Waves Direction 81 3.3.1.4 Sea Currents 81 3.3.1.5 Water Current 81 3.3.1.6 Analysis Type 82 3.3.1.7 Safety Factor (SF) 82 3.3.2 Power Production 83 3.3.3 Power Production Plus Occurrence of Fault 83 3.3.4 Start-Up 84 3.3.5 Normal Shut Down 85 3.3.6 Emergency Stop 85 3.3.7 Parked (Standing Still or Idling) 85 3.3.8 Parked and Fault Conditions 86 3.3.9 Transport, Assembly, Maintenance, and Repair 86 3.3.10 Input Data Codes 87 Chapter 4 Program Codes and Verification 108 4.1 Grouted Connection Design Spreadsheet Calculation 108 4.1.1 Design Variables 108 4.1.2 Design Criterion 111 4.1.2.1 ULS for Grouted Connection with Shear Keys in Jacket Structures 111 4.1.2.2 FLS for Grouted Connection with Shear Keys 114 4.1.2.3 FLS for Grouted Connection with Shear Keys in Jacket Structures 116 4.1.3 Spreadsheet Calculation for Kilonewton-Meter Units 116 4.2 Grouted Connection Rainflow Cycle-Counting Algorithm 118 4.3 Fortran Fatigue Grouted Connection Analysis 127 4.3.1 Preliminary Program Code and Verification 128 4.3.2 Grouted Connection Analysis Fortran Program Code 134 4.3.3 Fortran Fatigue Grouted Connection Numerical Verification 147 4.4 Grouted Connection Design Using Van Wijngaarden-Dekker-Brent Method 155 4.5 Grouted Connection Cost-Optimization Algorithm 161 Chapter 5 Parametric Study 174 5.1 Fatigue Design Variables Parametric Study 174 5.1.1 Initial Parameters 174 5.1.2 Modified Design Variables 184 5.1.3 Results and Discussion 186 5.1.3.1 Load Effects and Computational Time Saving 186 5.1.3.2 Characteristic Number of Cycles to Failure N 191 5.1.3.3 Relative Load Level y and Modified Design Variables Relations 194 5.2 Performance-Cost Parametric Study 211 5.2.1 Cost Estimation 211 5.2.1.1 Unit Price Data 214 5.2.1.2 Variable Costs 222 5.2.1.2.1 Full Cost 223 5.2.1.2.2 Partial Cost 227 5.2.2 Normalized Performance-Cost 231 5.2.3 Results and Discussion 232 5.2.3.1 Load Effects 232 5.2.3.2 Performance-Cost 243 5.2.3.3 Normalized Performance-Cost 253 5.2.3.4 Normalized Performance-Cost Between Design Variables 263 Chapter 6 Cost Optimization Using Genetic Algorithm 266 6.1 Unlocked Optimization 266 6.1.1 Fundamental Results 266 6.1.2 Variations of Load Ratios 270 6.1.3 Variations of ULS Loads Magnitude 285 6.1.4 Variations of All Loads Magnitude 292 6.2 Locked Optimization 299 6.2.1 Variations of Load Ratios 300 6.2.2 Variations of ULS Load Magnitude 312 6.2.3 Variations of All Loads Magnitude 319 Chapter 7 Optimum Design Discussion and Recommendation 325 7.1 Limitations 325 7.2 General 325 7.3 Pile and Transition Piece 326 7.4 Grout Thickness 334 7.5 Grout Length 336 7.6 Shear Keys Configuration 337 7.7 Optimum Grouted Connection Design Procedure 343 Chapter 8 Fortran Dynamic Fatigue Analysis and Design 347 8.1 Analysis (Design Check for Fatigue Life and Damage) 347 8.2 Design of Grouted Length 353 8.3 Design Case 1 355 8.4 Design Case 2 357 8.5 Fatigue Optimization Case 362 Chapter 9 Conclusion and Suggestion 373 9.1 Conclusion 373 9.2 Suggestion 374 References 376

    Adeli, H., & Sarma, K. (2006). Cost optimization of structures: fuzzy logic, genetic algorithms, and parallel computing. Wiley.

    AET. Wind turbine generator. Alternative Energy Tutorial. Retrieved Apr 04 from https://www.alternative-energy-tutorials.com/wind-energy/wind-turbine-generator.html

    Afework, B., Hanania, J., Stenhouse, K., & Donev, J. (2018). Betz limit. Energy Education, University of Calgary. Retrieved Apr 04 from https://energyeducation.ca/encyclopedia/Betz_limit

    Agarwal, T., Verma, S., & Gaurh, A. (2016). Issues and challenges of wind energy 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT),

    Alrikabi, N. K. M. A. (2014). Renewable energy types. Journal of Clean Energy Technologies, 61-64. https://doi.org/10.7763/jocet.2014.V2.92

    API. (1977). RP2A Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute.

    API. (1984). RP2A Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute.

    API. (1986). RP2A Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute.

    API. (2000). RP 2A-WSD Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design. American Petroleum Institute.

    API. (2007). RP 2A-WSD Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design. American Petroleum Institute.

    API. (2014). RP 2A-WSD Recommended practice for planning, designing and constructing fixed offshore platforms - working stress design. American Petroleum Institute.

    Apunda, M. O. N., Benard Oloo (2017, 31 July 2017). Challenges and opportunities of wind energy technology [Journal Article]. International Journal of Development Research, 07(07), 4. https://doi.org/10.13140/RG.2.2.15229.82403

    Arany, L., Bhattacharya, S., Macdonald, J., & Hogan, S. J. (2015). Simplified critical mudline bending moment spectra of offshore wind turbine support structures. Wind Energy, 18(12), 2171-2197. https://doi.org/10.1002/we.1812

    Arfiadi, Y. (2016). Operator kawin silang pada algoritma genetik riil untuk variabel rencana selalu positif. Jurnal Ilmu Terapan Bidang Teknik Sipil 22(2). https://doi.org/https://doi.org/10.14710/mkts.v22i2.12883

    Arfiadi, Y., & Hadi, M. (2001). Optimal direct (static) output feedback controller using real coded genetic algorithms. Computers & Structures 79(17). https://doi.org/https://doi.org/10.1016/S0045-7949(01)00041-4

    Aritenang, W., Elnashai, A. S., & Dowling, P. J. (1992). Analysis-based design equations for composite tubular connections. Engineering Structures, 14(3), 195-204. https://doi.org/https://doi.org/10.1016/0141-0296(92)90031-K

    Aritenang, W., Elnashai, A. S., Dowling, P. J., & Caroll, B. C. (1990). Failure mechanisms of weld-beaded grouted pile/sleeve connections. Marine Structures, 3, 391-417. https://doi.org/https://doi.org/10.1016/0951-8339(90)90011-F

    Arshad, M., & O’Kelly, B. C. (2013). Offshore wind-turbine structures: a review. Proceedings of the Institution of Civil Engineers - Energy, 166(4), 139-152. https://doi.org/10.1680/ener.12.00019

    Arshad, M., & O’Kelly, B. C. (2015). Analysis and design of monopile foundations for offshore wind turbine structures. Marine Georesources & Geotechnology, 34(6), 503-525. https://doi.org/10.1080/1064119x.2015.1033070

    ASTM. (2008). ASTM A 709/709M Standard specification for structural steel for bridges. American Society for Testing Materials.

    Austin, S., & Jerath, S. (2017). Effect of soil-foundation-structure interaction on the seismic response of wind turbines. Ain Shams Engineering Journal, 8(3), 323-331. https://doi.org/10.1016/j.asej.2017.05.007

    Baskar, S., Subbaraj, P., & Rao, M. (2001). Performance of hybrid real coded genetic algorithms. International Journal of Computational Engineering Science 2(2). https://doi.org/https://doi.org/10.1142/S1465876301000465

    Billington, C. J. (1978). The strength of large diameter grouted connections. Offshore Technology Conference, Texas, The United States of America.

    Billington, C. J., & Tebbett, I. E. (1980). The basis for new design formulae for grouted jacket to pile connections. Offshore Technology Conference, Texas, The United States of America.

    Billington, C. J., & Tebbett, I. E. (1982). Fatigue strength of grouted tubular steel connections for offshore structures. https://doi.org/10.5169/seals-28963

    Bortolotti, P., Kapila, A., & Bottasso, C. L. (2019). Comparison between upwind and downwind designs of a 10 MW wind turbine rotor. Wind Energy Science, 4(1), 115-125. https://doi.org/10.5194/wes-4-115-2019

    Brnic, J., Canadija, M., Turkalj, G., & Lanc, D. (2010). Structural steel ASTM A709—Behavior at uniaxial tests conducted at lowered and elevated temperatures, short-time creep response, and fracture toughness calculation. 136(9), 7. https://doi.org/10.1061/共ASCE兲EM.1943-7889.0000152

    Cao, W., Xie, Y., & T, Z. (2012). Wind Turbine Generator Technologies. In Advances in Wind Power. https://doi.org/10.5772/51780

    Chen, H.-H., Yang, R.-Y., Hsiao, S.-C., & Hwung, H.-H. (2019). Experimental study of scour around monopile and jacket-type offshore wind turbine foundations. Journal of Marine Science and Technology, 27(2), 10. https://doi.org/10.6119/JMST.201904_27(2).0002

    Chen, T., Li, Z., Wang, X., Yuan, G., & Liu, J. (2018). Experimental study on ultimate bending performance of grouted connections in offshore wind turbine support structures. Thin-Walled Structures, 132, 522-536. https://doi.org/10.1016/j.tws.2018.09.025

    Chen, T., Wang, X., Gu, X., Zhao, Q., Yuan, G., & Liu, J. (2019). Axial compression tests of grouted connections in jacket and monopile offshore wind turbine structures. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109330

    Chen, T., Wang, X., Yuan, G., & Liu, J. (2018). Fatigue bending test on grouted connections for monopile offshore wind turbines. Marine Structures, 60, 52-71. https://doi.org/10.1016/j.marstruc.2018.03.005

    Cheng, P. W. (2002). Reliability based design methodology for extreme response of offshore wind turbine Delft University]. The Netherlands.

    Chuang, Y., Chen, C., & Hwang, C. (2016). A simple and efficient real-coded genetic algorithm for constrained optimization. Applied Soft Computing, 38, 87-105. https://doi.org/https://doi.org/10.1016/j.asoc.2015.09.036

    Clark, R. N. (2012). Small wind: planning and building successful installations. Elsevier.

    Collins, D. (2021). What are multi-stage gearboxes and when are they used? Motion Control Tips. Retrieved Apr 04 from https://www.motioncontroltips.com/what-are-multi-stage-gearboxes-and-when-are-they-used/

    Dallyn, P., El-Hamalawi, A., Palmeri, A., & Knight, R. (2015). Experimental testing of grouted connections for offshore substructures: A critical review. Structures, 3, 90-108. https://doi.org/10.1016/j.istruc.2015.03.005

    DEn. (1982). Report of the working party on the strength of grouted pile-sleeve connections for offshore structures. Department of Energy.

    DEn. (1984). Guidance on the design and construction of offshore installation. Department of Energy.

    DNV. (2007). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.

    DNV. (2010a). DNV-OS-C502 Offshore concrete structures. Det Norske Veritas.

    DNV. (2010b). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.

    DNV. (2011). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.

    DNV. (2013). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.

    DNV. (2014). Offshore Standard DNV-OS-J101 Design of offshore wind turbine structures. Det Norske Veritas.

    DNVGL. (2016). DNV-ST-0126 Support structures for wind turbines. DNV GL AS.

    DNVGL. (2018a). DNV-ST-0126 Support structures for wind turbines. DNV GL AS.

    DNVGL. (2018b). DNV-ST-C502 Offshore concrete structures. Det Norske Veritas.

    DNVGL. (2019). DNV-OS-B101 Metallic materials. Det Norske Veritas.

    DWIA. (2003a). Wind turbines: how many blades? Danish Wind Energy Association. Retrieved Apr 04 from http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/design/concepts.htm

    DWIA. (2003b). Wind turbines: upwind or downwind machines? Danish Wind Energy Association. Retrieved Apr 04 from http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/design/updown.htm

    Economics, T. (2021). Lumber. Trading Economics. Retrieved Nov 11 from https://tradingeconomics.com/commodity/lumber

    EERE. (2021). Advantages and challenges of wind energy. US Department of Energy. Retrieved Mar 31 from https://www.energy.gov/eere/wind/advantages-and-challenges-wind-energy

    EIA. (2021). Gasoline and diesel fuel update. U.S. Energy Information Administration. Retrieved Nov 21 from https://www.eia.gov/petroleum/gasdiesel/

    Elins, R. (2019). Optimizing offshore foundation design choices. MBCC group. Retrieved Apr 04 from https://blog.master-builders-solutions.com/en/optimizing-offshore-foundation-design

    Elnashai, A. S., & Aritenang, W. (1991). Nonlinear modelling of weld-beaded composite tubular connections. Engineering Structures, 13(1), 34-43. https://doi.org/https://doi.org/10.1016/0141-0296(91)90006-X

    EN. (2005). EN 1993-1-1 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization.

    Evans, A., Strezov, V., & Evans, T. J. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13(5), 1082-1088. https://doi.org/10.1016/j.rser.2008.03.008

    Frans, R., & Arfiadi, Y. (2014). Sizing, shape, and topology optimizations of roof trusses using hybrid genetic algorithms. Procedia Engineering, 95, 185-195. https://doi.org/10.1016/j.proeng.2014.12.178

    Gao, W. (2006). Interval Finite Element Analysis using Interval Factor Method. Computational Mechanics, 39(6), 709-717. https://doi.org/10.1007/s00466-006-0055-8

    Geng, H., & Yang, G. (2014). Linear and nonlinear schemes applied to pitch control of wind turbines. ScientificWorldJournal, 2014, 406382. https://doi.org/10.1155/2014/406382

    Glassdoor. (2021). Contruction worker salaries United States. Glassdoor. Retrieved Nov 21 from https://www.glassdoor.com/Salaries/construction-worker-salary-SRCH_KO0,19.htm

    Goudarzi, N., & Zhu, W. D. (2013). A review on the development of wind turbine generators across the world. International Journal of Dynamics and Control, 1(2), 192-202. https://doi.org/10.1007/s40435-013-0016-y

    Harvey, P. D. (1982). Engineering properties of steel. ASM International.

    He, J., Chen, C., Yang, Z., Tian, H., Li, S., & Wang, D. (2017). Load spectrum generation of machining center based on rainflow counting method. Journal of Vibroengineering, 19(8), 5767-5779. https://doi.org/10.21595/jve.2017.18423

    Hu, W. (2018). Advanced wind turbine technology. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-78166-2

    IEC. (2019a). 61400-1 Wind energy generation systems - Part1: Design requirements. International Electronical Commision.

    IEC. (2019b). 61400-3-1 Wind energy generation systems – Part 3-1: Design requirements for fixed offshore wind turbines. International Electrotechnical Commission.

    Igwemezie, V., Mehmanparast, A., & Kolios, A. (2018). Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Marine Structures, 61, 381-397. https://doi.org/10.1016/j.marstruc.2018.06.008

    IRENA. (2012). Renewable energy technologies cost analysis series. International Renewable Energy Agency.

    IRENA. (2019). Future of wind. International Renewable Energy Agency.

    ISO. (2007). 19902 Petroleum and natural gas industries — Fixed steel offshore structures. International Organization for Standardization.

    ISO. (2020). 19902 Petroleum and natural gas industries — Fixed steel offshore structures. International Organization for Standardization.

    Jain, S., Bisht, D., & Mathpal, P. (2013). Comparative analysis of real and binary coded genetic algorithm for fuzzy time series prediction Emerging Trends in Computational and Applied Mathematics, Gurgaon, India.

    Jenkins, W. M. (1991). Technical note towards structural optimization via the genetic algorithm. Computers & Structures, 40(5), 8. https://doi.org/https://doi.org/10.1016/0045-7949(91)90402-8

    Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., & Zhang, D.-M. (2016). A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Problems in Science and Engineering, 25(9), 1343-1366. https://doi.org/10.1080/17415977.2016.1259315

    Johansen, A., Solland, G., Lervik, A., Strande, M., & Nybø, T. (2018). Testing of jacket pile sleeve grouted connections exposed to variable axial loads. Marine Structures, 58, 254-277. https://doi.org/10.1016/j.marstruc.2017.11.005

    Ju, S.-H., & Huang, Y.-C. (2020). MTMD to increase fatigue life for OWT jacket structures using Powell's method. Marine Structures, 71. https://doi.org/10.1016/j.marstruc.2020.102726

    Ju, S.-H., Su, F.-C., Ke, Y.-P., & Xie, M.-H. (2019). Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme. Renewable Energy, 136, 69-78. https://doi.org/10.1016/j.renene.2018.12.071

    Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C., & Mikkelsen, K. K. (2015, Feb 28). Optimization of monopiles for offshore wind turbines. Philos Trans A Math Phys Eng Sci, 373(2035). https://doi.org/10.1098/rsta.2014.0100

    Karsan, D. I., & Krahl, N. W. (1984). New API equation for grouted pile-to-structure connections. Offshore Technology Conference, Texas, The United States of America.

    Keene, M. (2021). Comparing offshore wind turbine foundations. Windpower Engineering & Development. Retrieved Apr 04 from https://www.windpowerengineering.com/comparing-offshore-wind-turbine-foundations/

    Kerrigan, S. (2018). The scientific reason why wind turbines have 3 blades. Interesting Engineering, Inc. Retrieved Apr 04 from https://interestingengineering.com/the-scientific-reason-why-wind-turbines-have-3-blades#

    Krahl, N. W., & Karsari, D. I. (1985). Axial strength of grouted pile-to-sleeve connections. Journal of Structural Engineering, 111(4). https://doi.org/https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(889)

    Kravanja, S., & Žula, T. (2013). Cost optimization of structures in civil engineering Proceedings of the New Developments in Structural Engineering and Construction

    Kuijen, K. V. Turbine topologies, number of blades. TUDelft. Retrieved Apr 04 from http://mstudioblackboard.tudelft.nl/duwind/Wind%20energy%20online%20reader/Static_pages/blades_number.htm

    Kuijen, K. V. Turbine topologies, type of hub. TUDelft. Retrieved Apr 04 from http://mstudioblackboard.tudelft.nl/duwind/Wind%20energy%20online%20reader/Static_pages/hub_type.htm

    Kuijen, K. V. Turbine topologies, upwind/downwind machines. TUDelft. Retrieved Apr 04 from http://mstudioblackboard.tudelft.nl/duwind/Wind%20energy%20online%20reader/Static_pages/upwind_downwind.htm

    Kumar, A., Khan, M. Z. U., & Pandey, B. (2018). Wind Energy: A Review Paper. Gyancity Journal of Engineering and Technology, 4(2), 29-37. https://doi.org/10.21058/gjet.2018.42004

    Kuri-Morales, A., & Gutiérrez-García, J. (2002). Penalty function methods for constrained optimization with genetic algorithms: a statistical analysis Mexican International Conference on Artificial Intelligence, Mexico.

    Lamport, W. B., Jirsa, J. O., & Yura, J. A. (1991). Strength and behavior of grouted pile-to-sleeve connections. Journal of Structural Engineering, 117(8). https://doi.org/https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2477)

    Larwood, S. M. C., R.;. (2016). Comparison of upwind and downwind operation of the NREL Phase VI Experiment. Journal of Physics: Conference Series, 753(022041). https://doi.org/doi:10.1088/1742-6596/753/2/022041

    Lazard. (2019). Lazard’s levelized cost of energy analysis — version 13.0. Lazard.
    Lee, Y.-L., & Tjhung, T. (2012). Rainflow cycle counting techniques. In Metal Fatigue Analysis Handbook (pp. 89-114). https://doi.org/10.1016/b978-0-12-385204-5.00003-3

    Lotsberg, I. (2013). Structural mechanics for design of grouted connections in monopile wind turbine structures. Marine Structures, 32, 113-135. https://doi.org/10.1016/j.marstruc.2013.03.001

    Lotsberg, I., Serednicki, A., Lervik, A., & Bertnes, H. (2012). Design of grouted connections for monopile offshore structures. Stahlbau, 81(9), 695-704. https://doi.org/10.1002/stab.201201598

    Lotsberg, I. S., Andrzej; Cramer, Espen; Bertnes, Håkon; Haahr, Per Enggaard. (2011, Oct 31, 2011). On the structural capacity of grouted connections in offshore structures. 30th international conference on offshore mechanics and arctic engineering (OMAE 2011), Rotterdam, Netherlands.

    Lotsberg, I. S., Gunnar. (2013, 9-14 June 2013). Assessment of capacity of grouted connections in piled jacket structures. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France.

    Lu, K., Zeng, G., Chen, J., Peng, W., Zhang, Z., Dai, Y., & Wu, Q. (2013). Comparison of binary coded genetic algorithms with different selection strategies for continuous optimization problems. Chinese automation congress Chinese Automation Congress, Changsha, China.

    Luecke, W. E., McColskey, J. D., McCowan, C. N., Banovic, S. W., Fields, R. J., Foecke, T., Siewert, T. A., & Gayle, F. W. (2005). NIST NCSTAR1 - 3D Mechanical properties of structural steels. National Institute of Standards and Technology.

    LuvSide. (2020a). Generators for wind turbine applications – part 1: the basics. LuvSide. Retrieved Apr 04 from https://www.luvside.de/en/generator-basics/

    LuvSide. (2020b). Generators for wind turbine applications – part 2: how to pick one. LuvSide. Retrieved Apr 04 from https://www.luvside.de/en/generators-how-to-pick-one/

    Marion, S., Johansen, A., Solland, G., & Nybø, T. (2018). Testing of jacket pile sleeve grouted connections exposed to shear forces and bending moments. Marine Structures, 59, 401-422. https://doi.org/10.1016/j.marstruc.2018.02.008

    MatWeb. ASTM A709 Steel, grade 50 and 50W, ≤ 100 mm. MatWeb. Retrieved Aug 05 from http://www.matweb.com/search/datasheet_print.aspx?matguid=9ccae9a8aeca4739b63ca27f2dc24970

    Mihet-Popa, L. G., Voicu. (2010). Dynamic modeling, simulation and control strategies for 2 MW wind generating systems. International Review of Modelling and Simulations IREMOS, 5, 1410-1418.

    Mohtasham, J. (2015). Review article - Renewable energies. Energy Procedia, 74, 1289-1297. https://doi.org/10.1016/j.egypro.2015.07.774

    Nigdeli, S. M., Bekdaş, G., & Yang, X.-S. (2018). Metaheuristic optimization of reinforced concrete footings. KSCE Journal of Civil Engineering, 22(11), 4555-4563. https://doi.org/10.1007/s12205-018-2010-6

    NORSOK. (2004). N-004 Design of steel structures. Standard Norway.

    NORSOK. (2013). N-004 Design of steel structures. Standard Norway.

    NORSOK. (2021). N-004 Design of steel structures. Standard Norway.

    NREL. (2021). OpenFAST documentation. National Renewable Energy Laboratory.
    Paalsgard. (2021). UN SDG support. Paalsgard. Retrieved Mar 27 from https://www.palsgaard.com/en/responsibility/un-global-compact-goals/un-sdg-support

    Pattanaik, J. K., Basu, M., & Dash, D. P. (2018). Improved real coded genetic algorithm for dynamic economic dispatch. Journal of Electrical Systems and Information Technology, 5(3), 349-362. https://doi.org/10.1016/j.jesit.2018.03.002

    Perry, M. J., Koh, C. G., & Choo, Y. S. (2006). Modified genetic algorithm strategy for structural identification. Computers & Structures, 84(8-9), 529-540. https://doi.org/10.1016/j.compstruc.2005.11.008

    Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes - The art of scientific computing 3rd edition. Cambridge University Press.

    Saidur, R., Rahim, N. A., Islam, M. R., & Solangi, K. H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5), 2423-2430. https://doi.org/10.1016/j.rser.2011.02.024

    Sandal, K., & Zania, V. (2016). Optimization of pile design for offshore wind turbine jacket foundations 12th EAWE PhD Seminar on Wind Energy, Denmark.

    Sarma, K. C., & Adeli, H. (2000). Cost optimization of steel structures. Engineering Optimization, 32(6), 777-802. https://doi.org/10.1080/03052150008941321

    Schaumann, P., Lochte-Holtgreven, S., & Bechtel, A. (2010). Fatigue design for axially loaded grouted connections of offshore wind turbine support structures in deeper waters. Earth and Space 2010: 12th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Honolulu, Hawaii.

    Schaumann, P., & Raba, A. (2015). Systematic testing of the fatigue performance of submerged small-scale grouted joints. 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland, Canada.

    Schaumann, P., Raba, A., & Bechtel, A. (2014a). Experimental fatigue tests on axially loaded grouted joints International Wind Engineering Conference, Hanover, Germany.

    Schaumann, P., Raba, A., & Bechtel, A. (2014b). Fatigue behaviour of axial loaded grouted joints in Tests. Berichte aus dem Institut für Baustoffe, 12, 219-226.

    Schaumann, P., Raba, A., & Bechtel, A. (2017). Fatigue behaviour of grouted connections at different ambient conditions and loading scenarios. Energy Procedia, 137, 196-203. https://doi.org/10.1016/j.egypro.2017.10.373

    Schaumann, P., & Wilke, F. (2006). Fatigue of grouted joint connections 8th German Wind Energy Conference, Bremen, Germany.

    Schaumann, P., & Wilke, F. (2007). Design of large diameter hybrid connections grouted with high performance concrete. International Offshore and Polar Engineering Conference, Lisbon, Portugal.

    Sohoni, V., Gupta, S. C., & Nema, R. K. (2016). A critical review on wind turbine power curve modelling techniques and their applications in wind based energy systems. Journal of Energy, 2016, 1-18. https://doi.org/10.1155/2016/8519785

    Solanki, C., Thapliyal, P., & Tomar, K. (2014). Role of bisection method. International Journal of Computer Applications Technology and Research, 3(8), 535 - 535.

    Solland, G., & Johansen, A. (2018). Design recommendations for grouted pile sleeve connections. Marine Structures, 60, 1-14. https://doi.org/10.1016/j.marstruc.2018.03.001

    Suli, E., & Mayers, D. F. (2003). An introduction to numerical analysis. Cambridge Univeristy Press.

    Talaslioglu, T. (2019). Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology. Frontiers of Structural and Civil Engineering, 13(4), 863-889. https://doi.org/10.1007/s11709-019-0523-9

    Technology, W. W. Monopile foundations with flanged connections - Monopile foundations with flanged connections. Progressive Media International. Retrieved Apr 04 from https://www.windpower-international.com/contractors/world-wind-technology/monopile-foundations-with-flanged-connections

    Thompson, M. P., Hamann, J. D., & Sessions, J. (2009). Selection and penalty strategies for genetic algorithms designed to solve spatial forest planning problems. International Journal of Forestry Research, 2009, 1-14. https://doi.org/10.1155/2009/527392

    Thresher, R. R., Michael; Veers, Paul. (2008). Wind energy technology Current status and R&D future Physics of Sustainable Energy Conference, Berkeley, United States.

    Tziavos, N. I., Hemida, H., Metje, N., & Baniotopoulos, C. (2016). Grouted connections on offshore wind turbines: a review. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 169(4), 183-195. https://doi.org/10.1680/jencm.16.00004

    UN. (2021). Sustainable development goals. United Nations. Retrieved Mar 27 from https://www.un.org/sustainabledevelopment/sustainable-development-goals/

    Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomaki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., & Wiser, R. (2019, Oct 25). Grand challenges in the science of wind energy. Science, 366(6464). https://doi.org/10.1126/science.aau2027

    Walton, R. R., Jennifer; Ingram, Elizabeth. (2011). Direct drive vs. gearbox: progress on both fronts. Power Engineering, Clarion Energy Media. Retrieved Apr 04 from https://www.power-eng.com/renewables/direct-drive-vs-gearbox-progress-on-both-fronts/#gref

    Wang, S.-H., & Chen, S.-H. (2010). Blade number effect for a ducted wind turbine. Journal of Mechanical Science and Technology, 22(10), 1984-1992. https://doi.org/10.1007/s12206-008-0743-8

    Wang, X., Chen, T., Zhao, Q., Yuan, G., & Liu, J. (2016). Fatigue evaluation of grouted connections under bending moment in offshore wind turbines based on ABAQUS scripting interface. International Journal of Steel Structures, 16(4), 1149-1159. https://doi.org/10.1007/s13296-016-0050-7

    Xianhui, Y., Zhaoqi, W., & Zehao, C. (2020). Comparison of prediction methods for axial strength of grouted connections with shear keys. Applied Sciences, 10(6). https://doi.org/10.3390/app10061942

    Yang, X.-S., Deb, S., & Mishra, S. K. (2018). Multi-species cuckoo search algorithm for global optimization. Cognitive Computation, 10(6), 1085-1095. https://doi.org/10.1007/s12559-018-9579-4

    Yang, X. (2014). Nature-inspired optimization algorithms (1st ed.). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-416743-8.00005-1

    Yang, Y., & Soh, C. K. (2002). Automated optimum design of structures using genetic programming. Computers & Structures, 80, 10. https://doi.org/https://doi.org/10.1016/S0045-7949(02)00108-6

    Zhou, Zhu, & Liu. (2019). A micropitting study considering rough sliding and mild wear. Coatings, 9(10). https://doi.org/10.3390/coatings9100639

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE