簡易檢索 / 詳目顯示

研究生: 張家源
Chang, Chia-Yuan
論文名稱: 具適應性光學系統之廣視域多光子激發螢光顯微術
Widefield Multiphoton Excited Fluorescence Microscopy with Adaptive Optics
指導教授: 陳顯禎
Chen, Shean-jen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 58
中文關鍵詞: 多光子激發螢光顯微術適應性光學
外文關鍵詞: multiphoton excited fluorescence microscopy, adaptive optics
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廣域多光子激發螢光顯微術(widefield multiphoton excited fluorescence microscopy)利用同時時間域和空間域聚焦 simultaneously spatial and temporal focusing)的特性提供了廣視野的光學切片(optical sectioning)功能,搭配z軸深度的掃描即可得到樣品的三維影像。實驗室目前已利用超快雷射放大器、正立式顯微鏡以及快速的高敏感度EMCCD造相機為主要架構,建立一套廣域多光子激發螢光顯微鏡,目前系統的取像幀率可高達每秒20幀影像以上,縱向解析度約為2.5 μm,可應用於活體生物樣品的即時觀測。
    任何光學系統的校正誤差、環境干擾以及生物樣品本身的不均勻度都會造成像差(aberration)進而影響整體成像品質。適應性光學系統(adaptive optics system,AOS)可藉由波前感測器回饋(feedback)訊號,利用波前致動器來動態補償受干擾的波前,使三維顯微系統達到較高的空間解析度並得到較深z 軸的影像。此研究論文主要是應用AOS 於廣視野多光子激發螢光顯微術,利用EMCCD 擷取影像之銳利度(sharpness)來當作回饋訊號,藉由訊號擷取(data acquisition,DAQ)卡之FPGA 模組來動態控制37像素之可調變聚焦鏡(deformable mirror)作及時之波前修正。除了補償系統本身校正誤差導致的影像的不均勻性之外,也修正樣品的干擾像差使時間域聚焦效率得到有效的提升,使影像整體的品質達到最佳化。
    實驗上採用攀登演算法(hill climbing algorithm)搭配不同的銳利度參數回饋影像光強及高頻資訊,能使螢光球影像光強提升1.3倍,而在神經細胞影像上也能得到初步的提升。

    A widefield multiphoton excited fluorescence microscopy based on simultaneously spatial and temporal focusing technique can provide sequential two-dimensional optical sectioning images via z-axis scanning, and then convert them to construct a three-dimensional (3D) image. Utilizing the strong instantaneous intensity of an ultrafast laser amplifier, the imaging of an upright microscope, and the ultrasensitive detection of a high-speed EMCCD camera as the framework, the widefield multiphoton excited fluorescence microscope has been developed and achieves an axial resolution of 2.5 μm with a frame rate of 20 Hz. Hence, it is useful for in vivo imaging in small animals’ functional activities such as neuron signal transmission and liver metabolism.
    The calibration error of an optical system, the disturbances from surrounding environment, and the wavefront distortion from turbid biospecimen will induce optical aberrations to degrade image quality. Therefore, an adaptive optics system (AOS) can be adopted for the wavefront compensation in order to provide high spatial resolution and deep penetration depth 3D images. This thesis is attempted to integrate the AOS into the developed widefield multiphoton excited fluorescence microscope. According to the distorted wavefront information via an EMCCD camera with image sharpness algorithms, a 37-element deformable mirror controlled by the FPGA module in a data acquisition (DAQ) board is used to correct the wavefront distortion in real time. The AOS compensated the optical system misalignment to improve the uniformity of the images. Besides, the distortion from biospecimen is reduced to ensure optimal temporal focusing.
    A hill climbing algorithm with different sharpness parameters according to the high spatial frequency of the image is utilized as the feedback control information. Currently, the AOS has successfully enhanced the fluorescence intensity of fluorescence micro-beads with 1.3 folds and also improved the quality of neuron images.

    摘要..... I Abstract .....II 誌謝.....IV 圖目錄.....VII 第一章序論.....1 1-1 前言.....1 1-2 文獻回顧.....2 1-3 研究動機及目的.....4 1-4 論文架構.....5 第二章適應性光學系統.....6 2-1 波前感測器......6 2-2 波前修正元件.....7 2-2-1 可調變聚焦鏡.....7 2-2-2 多通道驅動器.....8 2-3 數位訊號處理控制器..... 11 2-4 適應性光學應用於雷射聚焦.....12 第三章廣視域多光子激發螢光顯微術.....17 3-1 多光子激發螢光.....17 3-2 廣視域多光子激發螢光顯微鏡.....19 3-2-1 基本原理.....19 3-2-2 系統架構.....21 3-2-3 自動載物平台.....24 3-2-4 EMCCD.....24 3-3 數學模擬分析.....25 3-4 實驗結果與討論.....32 第四章具適應性光學之廣視域多光子激發螢光顯微術.....37 4-1 系統架構.....37 4-2 影像式回饋適應性控制....39 4-2-1 影像銳利度參數.....40 4-2-2 最佳化演算法.....43 4-3 實驗結果與討論.....46 第五章結論與未來展望.....52 參考文獻.....53

    1.N. Hubin and L. Noethe, “Active optics, adaptive optics, and laser guide stars,” Sci. 262, 1390-1394 (1993).
    2.R. K. Tyson, Principles of Adaptive Optics, 2nd ed., Academic (1998).
    3.J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106-110 (2009).
    4.M.E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008).
    5.D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468-1476 (2005).
    6.R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 67, 1200-1210 (1974).
    7.S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731-736 (2008).
    8.A. J. Wright, David Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton Microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
    9.H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229 (1953).
    10.M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829-2843 (2007).
    11.L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168-176 (1999).
    12.鐘正英,具液晶移相干涉術之適應性光學系統,中央大學機械工程所碩士論文,2005。
    13.卓粳佶,適應性光學於視覺科學之初探,成功大學工程科學所碩士論文,2006。
    14.M. Rueckel and W. Denk, “Coherence-gated wavefront sensing using a virtual Shack-Hartmann sensor,” Proc. SPIE 6306, 63060H (2006).
    15.M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098-1107 (2000).
    16.M. A. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083-1085 (2000).
    17.D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495-2497 (2009).
    18.M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatch media,” J. Microsc. 192, 90-98 (1998).
    19.Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226, 33-42 (2006).
    20.P. Kner, J. Sedat, D. Agard, and Z. Kam, “Applying adaptive optics to three-dimensional wide-field microscopy,” Proc. SPIE 6888, 68809 (2008).
    21.W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt. 49, 307-314 (2010).
    22.M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907-909 (1997).
    23.N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. methods 7, 141-150 (2010).
    24.L. P. Murray, J. C. Dainty, J. Coignus, and F. Felberer “Wavefront correction of extended objects through image sharpness maximisation,” Proc. SPIE 6018, 60181A (2005).
    25.L. P. Murray, J. C. Dainty, and E. Daly “Wavefront correction through image sharpness maximisation,” Proc. SPIE 5823, 40-47 (2005).
    26.L. F. Rodríguez-Ramos, T. Viera, J. V. Gigante, F. Gago, G. Herrera, Á. Alonso, and N. Descharmes, “FPGA adaptive optics system test bench,” Proc. SPIE 5903, 59030D (2005).
    27.K. Kepa, D. Coburn, J. C. Dainty, and F. Morgan, “High speed optical wavefront sensing with low cost FPGAs,” Meas. Sci. Rev. 8, 87-93 (2008).
    28.W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Sci. 248, 73-76 (1990).
    29.H.-B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21, 624-633 (2003).
    30.P. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photo. 2, 219-225 (2008).
    31.G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153-2159 (2005).
    32.M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS 99, 5788-5792 (2002).
    33.M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” PNAS 103, 17137-17142 (2006).
    34.D. Malacara, Optical Shop Testing, Wiley (1992).
    35.L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019-6026 (1999).
    36.M. Booth, T. Wilson, H.-B. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44, 5131-5139 (2005).
    37.http://www.ti.com
    38.http://www.olympusmicro.com
    39.http://www.microscopyu.com
    40.B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging, SPIE Publications (2006).
    41.B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press (2008).
    42.J. W. Goodman, Introduction to Fourier optics, Roberts & Company (2005).
    43.E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16, 22039-22047 (2008).
    44.http://www.prior.com
    45.http://www.andor.com
    46.G. Woods, Digital Image Processing, 3rd ed., Pearson (2009).
    47.S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Sci. 220, 671-680 (1983).
    48.M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745-2758 (1998).
    49.O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52-54 (2000).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE