簡易檢索 / 詳目顯示

研究生: 賴昱中
Lai, Yu-Chung
論文名稱: 鞋底磨損與模組化設計研究:以休閒鞋為例
Research on Shoe's Outsole of Abrasion and Modular Design:Taking Casual Shoes as an Example
指導教授: 劉說芳
Liu, Shuo-Fang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 91
中文關鍵詞: 休閒鞋鞋底磨損模組化設計
外文關鍵詞: Casual Shoes, Sole’s Abrasion, Modular Design
相關次數: 點閱:172下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鞋子是日常生活中不可或缺的用品,一雙好的鞋子更能幫自己在外表與安全上加分,但鞋面與鞋底的產品週期並沒有一致,通常是鞋底先磨損,而鞋面依然保持完好。根據研究顯示,隨著鞋底磨耗程度的增加,會導致使用者增加滑倒或腳部、走路姿勢變形的機會。搜索現有鞋底磨損的解決方案,發現除了高昂的店家修補服務與更換大底之外,亦可自行手作修補;然而,修補後走路的路感、美感都會大打折扣。因此,本研究透過研究國人鞋底磨耗的情況,分析各種不同身高體重與性別的人,在穿著鞋子上的鞋底磨損特徵,計算出磨損範圍,並依照模組化設計的手法,將在實驗中所得到的各項磨損範圍轉換成模塊的尺寸,初步搭配一種卡榫,成為可拆卸替換之鞋底,以期後續在研究鞋底模組化的結構與材料實驗試作上可依本研究之成果作為參考。
      本研究根據實驗所獲得的相關數據,初步分析得到鞋底跟部的磨損體積與穿鞋總時數呈正相關,統計樣本的各種基本數值也符合常態分布,而後根據這些數據,先將數據標準化,再轉換成模塊尺寸,最後邀請國內知名的製鞋集團研發主管與工程師進行設計訪談,作為本研究的修正建議與後續研究發展方向的規劃。訪談內容大致為對於本研究模組化設計的優缺點、製程、材料選用、應用在各種不同鞋類應注意的相關事項。

      Shoes are indispensable in daily life supplies, a pair of good shoes to help themselves in the appearance and safety of extra points, but the upper and soles of the product cycle is not consistent, usually the first wear soles, while the upper remains intact. According to the study, with the increase in the degree of wear, will lead to increased user slippage or foot, walking posture deformation opportunities. Search the existing soles wear solution and found that in addition to the high shop repair service and replacement outsole, but also self-repair; However, the road after the repair road feeling, beauty will be greatly reduced Therefore, the study through the study Chinese people soles wear situation, analysis of a variety of height and weight and gender of the people, wearing shoes on the sole wear characteristics, calculate the wear range, and in accordance with the modular design approach, will be in the experiment to get the wear The scope of conversion into the size of the module, initially with a kind of card tenon, as a removable replacement of the soles, with a view to the subsequent study of the sole structure of the structure and material experiments can be based on the results of this study as a reference.
      According to the data obtained from the experiment, the wear volume of the heel of the sole is positively correlated with the total number of shoes, and the basic values of the statistical samples are also consistent with the normal distribution. Then, according to the data, the data are standardized first, And then converted into the module size, and finally invited the well-known domestic shoe-making group R & D executives and engineers to conduct design interviews, as the proposed amendments to the study and follow-up research and development direction of the plan. Interview content is roughly for the study of the advantages and disadvantages of modular design, process, material selection, applied in a variety of different footwear should pay attention to the relevant matters.

    摘要 i SUMMARY ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.1.1 The Transformation Problem Encountered by the Domestic Footwear Industry 1 1.1.2 Burden Caused by Worn-out Soles on the Body 1 1.1.3 Excess Capacity of Shoes and the Waste of Resources 2 1.2 Research Motivation 2 1.2.1 Benefits of Replaceable Sole Modules 2 1.2.2 To Avoid Excessive Capacity of Shoes and the Waste of Consumption 2 1.2.3 Summary 3 1.3 Research Purposes 3 1.4 The Importance of Research 4 1.4.1 Improving the Efficiency of Resource Use 4 1.4.2 Potential Emerging DIY Market 4 1.4.3 To Provide Designers in the Young Adult Group of Shoes Design Reference 4 1.4.4 To Provide Footwear Design Innovation in the Field of Design and Development 5 1.5 Research Object Restrictions 5 1.5.1 Casual Shoe Types as the Target Shoe Design in this Study 5 1.5.2 The Soles to be Designed are for the Midsole and Outsole of Casual Shoes 6 1.5.3 The Design of the Soles of This Study Aims Only on the Dismantling, Repair, and the Usability Analysis, No Discussion of Other Parts. 7 1.5.4 The Subjects of This Study Were 15-24 Year Old 7 CHAPTER 2 LITERATURE REFERENCE 8 2.1 Foot Structure, Type and Shoes to Deal With 8 2.1.1 Distribution of Foot Structure 8 2.1.2 Summary of Wear Ranges 9 2.2 Soles Wear Condition Measurement Method and the Yaw Angle of Walking 10 2.2.1 The Condition of the Sole Wear and the Increase in the Energy Cost of the Human Body 10 2.2.2 Definition of Valgus Angle and Yaw Angle 11 2.2.3 Measurement of the Wear Condition of the Soles 12 2.2.4 Sole Wear Severity 13 2.3 Definition and Conditions of Module and Modularization, Product Modularization 14 2.3.1 Definition of Modules 14 2.3.2 Modularization 14 2.3.3 Feature Modularization 15 2.3.4 Product Modularization 15 2.3.5 Conditions to be met by Product Modularization 16 2.3.6 Modular Operation Related Principles and Methods 16 2.3.7 Example of Product Modularization 16 CHAPTER 3 RESEARCH METHODS 18 3.1 Research Process and Steps 19 3.2 Descriptions of Wear Range of Experimental Planning Content 20 3.2.1 Collection of Sole Wear Samples 20 3.2.2 Object Selection and Solicitation Process 21 3.2.3 Relevant Principles of Data Protection for the Subjects 21 3.2.4 Experimental Flow 21 3.3 Modular Design 26 3.4 Expert Interviews and Assessments 28 CHAPTER 4 RESULTS AND ANALYSIS 29 4.1 Statistical Results and Analysis of Sole Wear 29 4.1.1 Experimental Measurement Data 29 4.1.2 Analysis of Experimental Data 41 4.2 Soles Modular Design 43 4.2.1 Specified Sole Module Size 43 4.2.2 Modularization Module Function and Reorganization 50 4.3 Interview Outline 53 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 59 5.1 Conclusions 59 5.2 Recommendations for Follow-up Studies 60 REFERENCES 63 Appendix A Shoe Wear Research Survey Form 67 Appendix B Interview Invitation Letter 69 Appendix C Questionnaire Interview Content verbatim 72 Appendix D Experimental Sole Sample 81

    Abdulhadi HM, Kerrigan DC, LaRaia PJ (1996) Contralateral shoe-lift: Effect on oxygen cost of walking with an immobilized knee. Arch Phys Med Rehabil, 77: 670–672
    Cavanagh, P., & Lafortune, M. (1980).Ground reaction for ce in distance running. Journal of Biomechanics. 13, 397-406.
    Droste, M. “Bauhaus 1919-1933”, Benedict Taschen Series, Bauhaus-Archiv Museum für Gestaltung, Berlin. Dansk produktion: Book Service I/S, Copenhagen, 1990.
    Gefen, A. (2002). Biomechanical analysis of fatigue-related foot injury mechanisms in athletes and recruits during intensivemarching.Medical & Biological Engineering &Computing .40, 302-310.
    Gershenson, J.K. (1995), “Incorporation of Life-cycle Requirements into the Product Definition Process,” Ph.D. Dissertation, University of Idaho.
    Gershenson, J.A. and L. Stauffer (1995), “The Creation of a Taxonomy for Manufacturability Design Requirements,” Proceedings of the 1995 ASME Design Technical Conferences - 7th International Conference on Design Theory and Methodology, September, 1995, Boston, Massachusetts.
    Gershenson, J.K. (1996-1), “A White Paper on: Characteristic Modularity in Life-cycle Engineering,” The University of Alabama Life-cycle Engineering Laboratory Research Report #LEL961802.
    Gershenson, J.K. (1996-2), “CMILE Progress: Definition of Modularity and an Overview of Modular Design Methodology,” The University of Alabama Life-cycle Engineering Laboratory Research Report #LEL961805.
    Giandolini, M., Horvais, N., Farges, Y., Samozino, P., & Morin, J.B.(2013). Impact reduction through long-term intervention in recreational runners: midfoot strike pattern versus low-drop/low-heel height footwear. Eur J Appl Physiol., 113(8), 2077-90.
    Gottschall, J. S., & Kram, R. (2005). Ground reaction forces during downhill and uphill running. J Biomech., 38(3), 445-52.
    J. K. Gershenson , G. J. Prasad & Y. Zhang (2004) Product modularity: measures and design methods , Journal of Engineering Design, 15:1, 33-51
    Jakob Nielsen(1993)”Usability Engineering” Academic Press, Inc.
    Joe, Ellis (1989)Heavy Duty, Runy word ,52-53.
    Lafortune MA, Cavanagh PR, Sommer III HJ, Kalenak A (1994) Foot inversion-eversion and knee kinematics during walking. J. Orthop Res 12: 412–420
    Li, K.W., Chang, WR, Leamon, TB, Chen, CJ, “Floor slipperiness measurement: friction coefficient, roughness of floors, and subjective perception under spillage conditions,,” Safety Science, 42((6),), 547-565 (2004). (SCI)
    Michael DR, Casey KD, Paul CJ, Meera S (1996) The proportional work of lifting the center of mass during walking. Am J Phys Med Rehabil 75: 375–379
    Minetti AE, Capelli C, Zamparo P, Prampero PE, Saibene F (1995) Effect of stride frequency on mechanical power and energy expenditure of walking. Med Sci Sports Exerc 27: 1194–1202
    Ming-Chiuan Shiu , Li-Chen Fu , Hou-Tsan Lee & Feng-Li Lian (2010) Modular Design of a Reconfigurable Electromagnetic Robot, Advanced Robotics, 24:7, 1059-1078
    Seiji Saito, Satoshi Muraki and Yutaka Tochihara(2006) Effects of Worn-Out Soles on Lower Limb Stability, Shock Absorption and Energy Cost during Prolonged Walking
    Snyder, R. A., Koester, M. C., & Dunn, W. R. (2006).Epidemiology of stress fractures.Clin Sports Med., 25(1), 37-52.
    Thomas D. Miller, Per Elgård(1998) Defining Modules, Modularity and Modularization
    Verdejo R ., Mills. N .J. (2004a). Simulating the effects of long distance running on shoe m idsole foam .Polym er Testing, 23,567–574
    Verdejo R..,& Mills, N. J.(2004). Heel -shoe interactions and the durability of EVA foam running-shoe midsoles.Journal of Biomech., 37, 50-53.
    Yoshino K, Motoshige T, Araki T, Matsuoka K (2004) Effect of prolonged free-walking fatigue on gait and physiological rhythm. J Biomech 37: 1271–1280
    Routio, Pentti, “Historical Development of the Theory of Architecture”, homepage March 1998,Retrieved from http://www.uiah.fi/tm/metodi/135.html
    中華民國財政部公告之發文日期【2007年7月12日】發文字號【台財關字第09605503710號,休閒鞋定義
    宋雅偉、寇垣靜、張犧元(2010)。不同硬度鞋底在人體行走中的足底肌電變化。中國康復醫學雜誌,25(12),1157–1160頁。
    相子元、陳振昇、 楊文賓(2000)。鞋底結構設計之避震反彈分析。Journal of Medical and Biological Engineering,20(3),9–15頁。
    陳劉鈺(2006)。溫度、鞋底花紋和路面介質對鞋子止滑性能影響之研究。西安:陝西科技大學,23-65頁。
    曹永慶、林時旭(2011)。模組化手法於通用設計之應用-以站內之行人輔助導引裝置為例,8-22頁。
    賈利曉、張永振、李健、牛永平、孫樂民(2009)。人體步進摩擦的主要影響因素。摩擦學學報,29(6),627–633頁。
    羅向東、弓太生、楊敏貞(2004)。鞋底花紋與止滑性能間的密切初探。中國皮革,8,154-155頁。
    蔣至傑(2000)。選購慢跑鞋之考量因素。中華體育季刊,14(2) ,132–140頁。
    蔣至傑(1994)。跑鞋鞋底磨損程度與跑步速度對踝關節外翻角度之影響。體育學報,27,117-125頁。DIGITIMES,2013,手指、筆、多元化觸控輸入技術與應用發展:ttp://www.digitimes.com.tw/tw/dt/n/shwnws.asp?Cnlid=13&id=0000347606_SCL536NO1C8E385A9J49F&ct=1#ixzz3w7tfPGiC
    中華民國經濟部智慧財產局:專利檢索,Retrieved from http://twpat4.tipo.gov.tw/tipotwoc/tipotwk
    中華民國經濟部統計處:工業產品分類修訂草案發布日期:2016-02-24 下午 04:10,Retrieved from https://www.moea.gov.tw/MNS/dos/bulletin/Bulletin.aspx?kind=10&html=1&menu_id=6732&bull_id=2335
    財團法人塑膠工業技術發展中心:鞋底硬度單位,Retrieved from http://www.pidc.org.tw/
    國家標準CNS網路服務系統:CNS8634,Retrieved from https://www.cnsonline.com.tw/
    國際標準化組織:ISO 19952:2005,Retrieved from http://www.iso.org/iso/home.html

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE