| 研究生: |
王威鈞 Wang, Wei-Jiun |
|---|---|
| 論文名稱: |
鋼筋混凝土梁承受火害之強度分析 Analysis of Strength of Reinforced Concrete Beam Subjected to Fire |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 耐火性能 、梁柱複合構件 、火害 、溫度 、混凝土 |
| 外文關鍵詞: | fire resistance, beam-column sub-assemblages, fire, temperature, concrete |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼筋混凝土為現今房屋結構材料之主體,而耐火性能為建築物結構設計的重要指標之一。本研究旨在探討鋼筋混凝土梁柱複合構件在高溫中、後之強度衰減情形與變形特性,同時利用ANSYS軟體分析試體內部溫度變化。本研究共測試2座實尺寸之梁柱複合構件試體,本文主要針對普通混凝土試體BNC1及自充填混凝土試體BSC1的梁進行研究,並與前期研究試體之成果相對照。
在高溫中,因梁試體受熱膨漲,使得梁末端反力減少,因此,梁柱接頭點至第一個加載點(距柱1.75 m處)間的剪力會增加,負彎矩區之彎矩在高溫中也會增加,而正彎矩區的彎矩則相對減少。梁試體在升溫過程中,正彎矩區之彎矩強度折減情形大於負彎矩區,此因梁底部混凝土及張力鋼筋所提供的強度受到高溫有明顯折減之故。
在殘餘強度測試中,試體之梁加載至服務載重的1.9-2.3倍時,梁之撓度開始出現明顯增加,最後均於第二個加載點(距柱4.35 m)發生發生版頂部混凝土壓碎之撓曲破壞,本研究所預測BNC1與 BSC1試體之極限載重與實測值之比值分別為0.76與0.78。
Reinforced concrete is the primary construction material of buildings nowadays, and fire resistance is one of the critical factors considered in design of buildings. This thesis aims at studying the behavior of beam-column sub-assemblage during preheating, heating and residual strength stages. Meanwhile, the ANSYS software is used to predict the temperature distribution of specimens. In experimental study, two full-scale beam-column sub-assemblage specimens were tested (BNC1 and BSC1). This thesis is focused on the study of beam in ordinary concrete specimens, BNC1, and self-compacting concrete specimens, BSC1.
In the heating phase, the thermal expansion of beam reduced the reaction at support, which led to the increase of shear force within the 1st loading point (at 1.75 m from the column) and joint and then increase of negative moment at joint, and decrease of positive moment at the 2nd loading point (at 4.35 m from the column). The decrease of positive moment is greater than that of negative moment, because more reduction in the strength of concrete and reinforcement occurred at the bottom of beam in the heating stage.
In the residual strength test, the deflection of beam in both specimens became pronounced as the total beam load reached 1.9-2.3 times of service load. Both specimens failed in typical ductile flexural mode by the crushing of concrete at top slab of second load point. The ratio of predicted to measur failure load of the two specimens are 0.76 and 0.78, respectively.
1. European Committee, “Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” EN 1992-1-2:2004: E.
2. European Committee, “Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” ENV 1992-1-2:1995.
3. Ellingwood, B., and Shaver, J. R., “Effects of Fire Reinforced Concrete Members,” Journal of the Structural Division, ASCE, Vol. 106, No. ST11, Nov. 1980, pp. 2151-2166.
4. Lie, T. T., and Barbaros, C., “Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns,” ACI Materials Journal, Vol. 88, No. 1, Jan.-Feb. 1991, pp. 84-91.
5. Kodur, V., and Kahliq, W., “Effect of Temperature on Thermal Properties of Different Types of High-Strength Concrete,” Journal of Materials in Civil Engineering, ASCE, June 2011, pp. 793-801.
6. ACI Committee 216, “Guide for Determining the Fire Endurance of Concrete Elements,” American Concrete Institute, 1994.
7. Anderberg Y., “Spalling Phenomena of HPC and OC,” NIST Workshop on Fire Performance of High Strength Concrete, Gaithersburg, Feb. 13-14 1997.
8. Hertz, K. D., “Limits of spalling of fire-exposed concrete,” Journal of Fire Safety, Vol. 38, 2003, pp. 103-116.
9. Husem, M., “The effects of high temperature on compressive and flexural strengths,” Fire Safety Journal, Vol. 41, No. 2, Mar. 2006, pp. 155-163.
10. Arioz, O., “Effects of elevated temperatures on properties of concrete,” Fire Safety Journal, Vol. 42, 2007, pp. 516-522.
11. Chan, Y. N.; Peng, G. F.; and Anson, M., “Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures,” Cement and Concrete Composites, Vol. 21, 1999, pp. 23-27.
12. 陳舜田、林英俊、楊旻森 , 「火害後鋼筋混凝土桿件之扭力行為」 ,行政院國家科學委員會專題研究計畫成果報告,國立台灣工業技術學院營建工程技術系,台北(1995)。
13. Ünlüoğlu, E.; Topçu, İ. B.; and Yalaman, B., “Concrete cover effect on reinforced concrete bars exposed to high temperatures,” Construction and Building Materials, Vol. 21, 2007, pp.1155-1160.
14. El-Hawary, M. M.; Ragab, A. M.; El-Azim, A. A.; and Elibiari, S., “Effect of fire on flexural behaviour of RC beams,” Construction and Building Materials, Vol. 10, No. 2, Mar. 1996, pp. 147-150.
15. Ellingwood, B.; and Lin, T. D., “Flexure and Shear Behavior of Concrete Beams During Fires,” Journal of Structural Engineering, ASCE, Vol. 117, No. 2, Feb. 1991, pp. 440-458.
16. 內政部建築研究所,「建築物構造防火性能驗證技術手冊」,台灣(2005)。
17. 中華民國國家標準局CNS 12514,「建築物構造部份耐火試驗法」,台灣(2010)。
18. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2008, 465 pp.
19. Nilson, A. H., “Design of prestressed concrete 2/E,” Wiley, New York, 1987.
20. 張朝輝,「ANSYS熱分析教程與實例解析」,中國鐵道出版社,北京(2007)。
21. 博嘉科技,「有限元分析軟件-ANSYS融會與貫通」,中國水利水電出版社,北京(2002)。
22. CEB-FIP, “Design of Concrete Structure for Fire Resistance,” Bulletin D’Information, N 145, 1982
23. 葉宗益,「鋼筋混凝土梁柱複合構件承受高溫之行為研究─普通混凝土梁之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2007)。
24. 方怡中,「鋼筋混凝土梁柱複合構件承受高溫之行為研究─自充填混凝土梁之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2007)。
25. 陳坤樟,「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究─普通混凝土梁之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2008)。
26. 王奕程,「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究─自充填混凝土梁之承力行為」,碩士論文,國立成功大學土木工程研究所,台南(2008)。
27. 邱柏昇,「鋼筋混凝土房屋構架在高溫中、後之行為研究─普通混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2009)。
28. 周禮緯,「鋼筋混凝土房屋構架在高溫中、後之行為研究─自充填混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2009)。
29. 張君輔,「鋼筋混凝土梁柱複合構件受高溫之行為研究─普通混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
30. 林岱蔚,「鋼筋混凝土梁柱複合構件受高溫之行為研究─自充填混凝土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
31. 黃瑞賢,「鋼筋混凝土梁柱複合構件受高溫之行為研究─普通混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。
32. 施玟宇,「鋼筋混凝土梁柱複合構件受高溫之行為研究─自充填混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南(2010)。