| 研究生: |
黃歆 Huang, Hsin |
|---|---|
| 論文名稱: |
高解析度超音波向量都卜勒影像用於評估血管動態功能: 小動物至人體研究 High-resolution Ultrasound Vector Doppler Imaging for Evaluating Dynamic Vascular Function: From Small Animals to Human |
| 指導教授: |
黃執中
Huang, Chih-Chung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 高頻超音波 、超快速影像 、高解析度 、向量都卜勒影像 、向量流 、動態血管功能 |
| 外文關鍵詞: | High-frequency ultrasound, Ultrafast imaging, High resolution, Vector Doppler imaging, Vector flow, Dynamic vascular function |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管系統的功能與如何去維持細胞的恆定狀態有關,而利用超音波來量測血管動態功能如血流速度則是最常被用來評估血管系統的功能。目前超音波在量測血管動態功能上主要藉由超音波都卜勒(Doppler)技術,包含了能量都卜勒、彩色都卜勒以及脈衝波都卜勒量測方式。然而,一般的都卜勒技術因為受限於都卜勒角度的問題,沒辦法去量測複雜移動情況(如擾流或是渦流),儘管有許多超音波向量流的技術被提出來解決此項問題,目前向量流技術的時間以及空間解析度不足以來清楚解析複雜移動方式,特別是針對在臨床前的小動物研究上,向量流的技術仍然有許多限制。
有鑒於此,本論文目的為發展高解析度(包含時間及空間)的向量都卜勒影像(high-resolution vector Doppler imaging, HRVDI)來準確的評估複雜的血流流動或是物體移動模型,並且能應用於評估血管功能。為了實現此目標,超音波影像擷取部分使用了高頻(40 MHz)超音波探頭並搭配超快速的平面波發射成像。同時,利用多角度的平面波發射來評估向量流並能準確評估每個立體位置點(二維空間與一維時間)的向量速度。此論文中闡述演算法的驗證及實際用於小動物研究中有關血管功能的研究,並延伸至在人體上的研究。
有關HRVDI的演算法的建立及相關驗證,HRVDI主要利用不同平面波發射角度向所得到的彩色都卜勒結果作為基礎,對於單一角度發射的彩色都卜勒來說,僅能量測到平行於波前進方向的速度,實際量測到準確流速需藉由使用者定義都卜勒角度,而在多重發射下,可獲得在不同發射方向的速度,並可藉由多重波束方式在不定義都卜勒角度情況下得到準確流速及方向。HRVDI首先被用來評估血管動態功能中有關腦血管的的血流動力學,特別是針對皮質層的穿透及上升小血管,以往因為時空間解析度不足所以難以量測到此區域的變化。首先藉由奇異值濾波器來偵測血流(特別針對小血管),接著應用以形態學為基礎的Bowler-hat轉換以及海森血管增強技術(Hessian-based vessel enhancement)來抑制雜訊並改善血管的可視性;同時,以奇異值為基礎的自適應性濾波器也被提出來改善小血管流速的偵測。驗證部分則使用微流管來完成,誤差落於10 %以內。整合這些技術,高時空解析度的向量微都卜勒影像(high-spatiotemporal-resolution vector micro-Doppler imaging, HVμDI)被提出來視覺化及量化腦血管動力情形,最小可觀測的血管尺寸為38 μm而有效的影像解析度為500 Hz。實驗部分則在野生以及阿茲海默症的小鼠腦上執行。腦血管直徑、血流速度、血管曲折度、密度以及脈動性被用來做為評估參數。除此之外,HVμDI更被用來檢驗不同順時下血流的方向性。所有結果均顯示阿茲海默症造成的病變可被HVμDI診斷。
在第二部分,HRVDI被進一步用來探討在小鼠的心血管系統中有關冠狀動脈的血管動態功能。當冠狀動脈呈現粥狀硬化情形,會導致心肌供氧量不足並使心肌產生硬化,因此可藉由評估心肌的形變影像來評估冠狀動脈的血管動態功能。HRVDI可以提供每個立體像素點的向量速度,故很適合用來做高解析度心肌形變影像。一個自動兩階段隨機迭代方式被提出來量測心肌形變,驗證部分則是藉由量測氣球仿體在充氣及洩氣時管壁厚度的變化來完成。仿體結果部分顯示了高的相關係數(r=0.84)。體內研究則使用野生(wild-type, WT)及心肌梗塞(myocardial infarction, MI)的老鼠。結果顯示MI老鼠在逕向形變(長軸及短軸)、環狀形變、及橫向形變均有明顯下降,且此趨勢能藉由所提出的心肌影像來清楚觀測及評估,包含了不同局部區域上的病變情形。另一方面也能清楚量測出不同心肌層的形變數值[WT 老鼠: −22.0 pm 1.2 % (內層) 及 −16.8 pm 0.9 % (外層)];在MI老鼠上分層形變則沒有明顯差異。此實驗很好的展示了藉由HRVDI可用來做出動態的高解析度影像並能應用於心臟學研究上。
第三部分則是將HRVDI及其衍伸的心肌形變影像應用於斑馬魚的心臟再生研究。斑馬魚心臟尺寸較小鼠心臟小,因此更適合所提出的高解析度超音波向量都卜勒影像。斑馬魚的心肌構造可分為兩部分,外層為完整的心肌構造,內層則為有許多層狀小樑(trabeculae)所組成的複雜構造,因此難以直接藉由影像辨別出心肌位置。因此,在班馬魚心臟研究部分首先利用奇異值濾波器來偵測心臟血流區域,再將此偵測出的區域從心臟大致位置中去除來識別心肌區域,此識別出的區域則被用來評估心肌的速度以及型變。驗證方面利用自製的不同形狀的流管來進行驗證,血管偵測的誤差則約為6 %左右。實驗方面使用AB-line的成年斑馬魚,並利用心肌凍損手術來評估心臟再生。藉由所提出的技術可直接視覺化在受傷前後以及恢復中心肌速度及型變的變化,心肌動損手術後,在晚期舒張時期的心肌速度有顯著的下降(約−2.1 mm/s),而形變則在受傷區域有顯著的差異(約−4.4 %)。在術後第14天,速度及型變接回覆正常標準值。此部分展示了所提出的技術可運用於小動物斑馬魚的實驗,並能用來評估在心臟再生期間的血管動態功能。
在最後一部分則將HRVDI運用於人體上的量測,在人體量測上血流速度較快,在使用高頻超音波的情況下較容易超過可量測的速度範圍,並產生相位混疊的情形,而當相位混疊發生時,速度的誤差會大幅增加,甚至超過100 %,故相位展開基於時間及空間的連續性被用來解決此問題。直管仿體以及窄化管仿體被用來驗證相位展開的演算法,在流速高於可量測範圍的情況下,藉由相位展開演算法後大部分流速誤差在10 %以內。HRVDI的可行性在人體的靜脈血流上做初步測試。HRVDI被用來量測靜脈瓣附近不同位置的速度,同時也測試了不同姿勢下的流速情形。結果顯示流速在靜脈瓣間最快且在坐姿姿勢時流速會大幅下降。HRVDI並能用來動態描繪靜脈瓣間高速流噴射的情形以及在靜脈瓣竇所造成的低流速渦流情形。因此,HRVDI在人體研究的可行性被驗證以及展示。
在此論文中,基於都卜勒技術的HRVDI被提出,並藉由超快速的高頻超音波系統來實現。此技術能夠提出在影像範圍內每個立體像素點的向量速度,以此技術為基礎更能被用來動態視覺化及量化腦血管及心血管的動態功能,並延伸至人體靜脈血管功能的研究。所有結果均顯示高解析度的向量都卜勒影像可藉由超快速高頻超音波影像來實現並能實際應在多種研究上(包含小動物研究及人體研究)來評估血管功能。
The function of the vascular systems such as the cardiovascular or cerebral vascular systems is associated with the maintenance of the cellular homeostasis. In order to investigate the function of the vascular system, the golden standard is to use the ultrasound for measuring the dynamic vascular function such as the vascular velocity. Currently, measuring the dynamic vascular function through ultrasound is typically performed using ultrasound Doppler flow measurements (including power Doppler, color Doppler and pulsed-wave Doppler measurements). However, conventional Doppler measurements are prone to error due to the inherent Doppler angle issue in the complex turbulent or vortex flow region. Although several ultrasound vector flow imaging techniques have been developed. The spatial and temporal resolutions of current vector flow techniques are insufficient to depict the complex flow clearly, especially for the preclinical small-animal imaging.
Therefore, the goal of the present thesis aims to develop a high-resolution (both temporal and spatial) vector Doppler imaging (HRVDI) for the accurately estimating the complex flow (or motion) pattern and assessing the dynamic vascular function. To achieve this goal, a 40-MHz high-frequency linear-array transducer with ultrafast plane-wave transmitting is utilized for the data acquisition. Multi-angle plane-wave transmitting is utilized for estimation the vector flow imaging, which ensure the capability of the vector information in every voxel (two-dimensional spatial and one-dimensional temporal). Validation of the algorithms and the assessing vascular function in both small animals and humans to confirm the feasibility and capability in this thesis.
First part illustrates the algorithm of HRVDI and the phantom validation. The algorithm of HRVDI is based on the color Doppler measurements from different plane-wave transmitting angles. For color Doppler measurement from single plane-wave transmitting angles, only the velocity along the beam direction can be measured and a Doppler angle is needed to be manually determined for accurate measurement; while HRVDI utilized the color Doppler results from different transmitting angles and the accurate velocity (magnitude and direction) can be evaluated through multi-beam strategy. HRVDI is firstly applied for the dynamic vascular function related to cerebrovascular hemodynamics, especially for the small cortical penetrating and ascending vessels, which remains challenging in current ultrasound modalities due to the insufficient spatiotemporal resolution. Singular value decomposition (SVD) filtering is firstly utilized to extract the blood flow signals (especially for the small vessels). Then, morphology-based methods of bowler-hat transform and Hessian-based vessel enhancement are applied to suppress the noise and improve the visibility of the small vessels. Also, an automatically adaptively filtering strategy based on SVD operation is proposed for accurately measurement in small vessels. A microtube flow phantom is established for the validation and the errors are < 10 %. With these processing, a high-spatiotemporal-resolution vector micro-Doppler imaging (HVμDI) is developed for visualizing and quantifying cerebrovascular hemodynamics. The minimal detectable vascular size is 38 μm and the temporal resolution is 500 Hz. Experiments are carried out using WT and Alzheimer’s disease (AD) mice. Cerebrovascular vessel diameters, velocity, tortuosity, density and is utilized for quantification. In addition, HVμDI ensures the capability of assessing the instant flow directionality. Results shows the alteration due to AD can be assessed through HVμDI.
HRVDI is further applied for evaluating dynamic vascular function of the coronary atherosclerosis in the mice cardiovascular system. Coronary atherosclerosis disease causes insufficient blood supple to the heart muscle, leading to myocardial stiffness. Myocardial strain imaging can be utilized for the assessment of stiffness and thereby can reflect the disorder in coronary disease. HRVDI can be utilized for a high-resolution myocardial strain imaging since the vector velocity in every voxel can be measured. An automatic two-step randomized iterative approach is proposed for the strain estimation. Validation is carried out through balloon phantom experiments by estimating the change in balloon wall thickness due to the inflation or dilation. The experiments demonstrate a high coefficient of the correlation (r=0.84). In vivo experiments are performed for wild-type (WT) and myocardial infarction (MI) mice. Strains including radial (long and short axis), longitudinal and circumferential strains decreased largely in MI mice and the decrease can be dynamically visualized through high-resolution strain imaging. Regional analysis shows a significant decrease in the ventricle apical anterior region of MI mice. Layer-based longitudinal strain curves are also measured and the peak strain values for WT mice were −22.0 pm 1.2 % and −16.8 pm 0.9 % in the endocardial (inner) and epicardial (outer) layers, respectively. However, no significant difference in the layer-based values is noted for the MI mice. The experimental results demonstrate that the proposed dynamic cardiac strain imaging through HRVDI can be useful in high-performance small-animal imaging of cardiovascular research.
Subsequently, HRVDI and the proposed strain imaging are applied for the investigation of heart regeneration in adult zebrafish. Due to its smaller size compared to the one of mice, the proposed HRVDI becomes even more suitable for zebrafish. The myocardium of zebrafish can be separated into two parts: a compact outer compact myocardium and an inner myofibers organized into trabeculae. It’s difficult to recognize the myocardial region directly through the images. Therefore, cardio flow extraction through SVD filtering is conducted and the myocardial region is recognized by subtracting the extracted cardio flow region from the segmented ventricular position, and the recognized region is utilized for the evaluation of myocardial velocity and strain. Validation is performed through in-house manufactured flow phantom and the error of the flow extraction is around 6 %. In vivo experiments are carried out using AB-line adult zebrafish and cryoinjury is induced for evaluating heart regeneration. With the proposed technique, the difference in myocardial velocity and strain during heart regeneration is clearly visualized and quantified. After cryoinjury, myocardial velocity significantly decreases (around -2.1 mm/s); while myocardial strain significantly decreases (around -4.4 %) in the injured region. Both the myocardial velocity and strain returns to the baseline value at day 14 after cryoinjury. The experimental results demonstrate that the proposed technique can be implemented on the small-animal zebrafish experiment and utilized for the investigation of heart regeneration.
Finally, HRVDI is utilized for measurement in human study. Since the flow velocity is faster in human than in small animals, the flow velocity may exceed the maximal measured velocity due to the use of high-frequency ultrasound, leading to aliasing. When aliasing occurs, the velocity estimation becomes reliable (error may even exceed 100 %). Therefore, phase-unwrapping processing based on the spatial and temporal continuity is performed to avoid the aliasing. With phase-unwrapping processing, most of errors are less than 10 %. The preliminary feasibility of HRVDI in human study are demonstrated through human venous flow, which is associated with the chronic venous disease. Flow velocities at different location in sitting and standing positions are evaluated. The velocity is faster between the leaflets and the velocity decreases in sitting position. HRVDI is able to dynamically depict the high-speed jet phenomena between the venous valve leaflets and low-speed vortex phenomena in the sinus pocket. Hence, the capability and feasibility of HRVDI in human study is proved and demonstrated.
In this thesis, HRVDI are proposed and implemented on various dynamic vascular functions by using ultrafast high-frequency ultrasound system. This imaging methodology is able to provide the vector flow information in every voxel in all the field of view. The dynamic vascular function, including the cerebral hemodynamics, myocardial strain imaging and the venous vortex flow, can be dynamically visualized and quantified. All results reveal that the proposed HRVDI can achieved through ultrafast high-frequency imaging and can be applied on various study (from small animal to human) to evaluate the dynamic vascular function.
Adrian RJ, Particle-imaging techniques for experimental fluid mechanics, Annual review of fluid mechanics, 23(1), 261-304, 1991.
Adrian RJ, Particle-imaging techniques for experimental fluid mechanics, Annual review of fluid mechanics, 23(1), 261-304, 1991.
Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerbe BL, Myocardial strain imaging: review of general principles, validation, and sources of discrepancies, European Heart Journal-Cardiovascular Imaging, 20(6), 605-619, 2019.
Angelsen BA, A theoretical study of the scattering of ultrasound from blood, IEEE Transactions on Biomedical Engineering, 2, 61-67, 1980.
Arning C, Eckert B, The diagnostic relevance of colour Doppler artefacts in carotid artery examinations. European Journal of Radiology, 51(3), 246-251, 2004.
Avolio A, Kim MO, Adji A, Gangoda S, Avadhanam B, Tan I, Butlin M, Cerebral haemodynamics: effects of systemic arterial pulsatile function and hypertension, Current Hypertension Reports, 20, 1-11, 2018.
Baek KR, Bae MH, Park SB, A new aliasing extension method for ultrasonic 2-dimensional pulsed Doppler systems, Ultrasonic Imaging, 11(4), 233-244, 1989.
Barbará-Morales E, Pérez-González J, Rojas-Saavedra KC, Medina-Bañuelos V, Evaluation of brain tortuosity measurement for the automatic multimodal classification of subjects with Alzheimer’s disease, Computational Intelligence and Neuroscience, 2020.
Becker M, Ocklenburg C, Altiok E, Füting A, Balzer J, Krombach G, Lysyansky M, Kühl H, Krings R, Kelm M, Hoffmann R, Impact of infarct transmurality on layer-specific impairment of myocardial function: a myocardial deformation imaging study, European Heart Journal, 30(12), 1467-1476, 2009.
Bergan JJ, Schmid-Schönbein GW, Smith PDC, Nicolaides AN, Boisseau MR, Eklof B, Chronic venous disease, New England Journal of Medicine, 355(5), 488-498, 2006.
Bergmann O, Evidence for cardiomyocyte renewal in humans, Science, 324(5923), 98-102, 2009.
Bhan A, Sirker A, Zhang J, Protti A, Catibog N, Driver W, Botnar R, Monaghan MJ, Shah AM, High-frequency speckle tracking echocardiography in the assessment of left ventricular function and remodeling after murine myocardial infarction, American Journal of Physiology-Heart and Circulatory Physiology, 306(9), H1371-H1383, 2014.
Blinder P, Shih AY, Rafie C, Kleinfeld D, Topological basis for the robust distribution of blood to rodent neocortex, Proceedings of the National Academy of Sciences, 107(28), 12670-12675, 2010.
Bonagura JD, Miller MW, Darke PG, Doppler echocardiography I: pulsed-wave and continuous-wave examinations, Veterinary Clinics: Small Animal Practice, 28(6), 1325-1359, 1998.
Bouvy WH, Geurts LJ, Kuijf HJ, Luijten PR, Kappelle LJ, Biessels GJ, Zwanenburg JJM, Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7‐T quantitative flow MRI, NMR in Biomedicine, 29(9), 1295-1304, 2016.
Brunner C, Grillet M, Urban A, Roska B, Montaldo G, Macé E, Whole-brain functional ultrasound imaging in awake head-fixed mice, Nature Protocols, 16(7), 3547-3571, 2021.
bt Aziz NS, bt Ibrahim N, Abdullah K, bt Mat Harun NH, Computational fluid dynamics simulation on blood velocity and vorticity of venous valve behaviour, In 9th International Conference on Robotic, Vision, Signal Processing and Power Applications: Empowering Research and Innovation, 617-625, 2017.
Bullitt E, Aylward SR, Van Dyke T, Lin W, Computer-assisted measurement of vessel shape from 3T magnetic resonance angiography of mouse brain, Methods, 43(1), 29-34, 2007.
Bullitt E, Gerig G, Pizer SM, Lin W, Aylward SR, Measuring tortuosity of the intracerebral vasculature from MRA images, IEEE Transactions on Medical Imaging, 22(9), 1163-1171, 2003.
Cahill TJ, Kharbanda RK, Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: mechanisms, incidence and identification of patients at risk, World Journal of Cardiology, 9(5), 407, 2017.
Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA, A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data, Cerebral Cortex, 25(11), 4628-4637, 2015.
Capineri L, Scabia M, Masotti L, A Doppler system for dynamic vector velocity maps, Ultrasound in Medicine & Biology, 28(2), 237-248, 2002.
Carradice D, Mekako AI, Mazari FAK, Samuel N, Hatfield J, Chetter IC, Clinical and technical outcomes from a randomized clinical trial of endovenous laser ablation compared with conventional surgery for great saphenous varicose veins, Journal of British Surgery, 98(8), 1117-1123, 2011.
Cavezzi A, Labropoulos N, Partsch H, Ricci S, Caggiati A, Myers K, Nicolaides A, Coleridge-Smith P, Duplex ultrasound investigation of the veins in chronic venous disease of the lower limbs–UIP Consensus Document. Part II: Anatomy, Phlebology, 21(4), 168-179, 2006.
Cikes M, Tong L, Sutherland GR, D’hooge J, Ultrafast cardiac ultrasound imaging: technical principles, applications, and clinical benefits, JACC: Cardiovascular Imaging, 7(8), 812-823, 2014.
Chablais F, Veit J, Rainer G, Jaźwińska A, The zebrafish heart regenerates after cryoinjury-induced myocardial infarction”, BMC Developmental Biology, 11(1), 1-13, 2011.
Chang CC, Chen PY, Huang H, Huang CC, In vivo visualization of vasculature in adult zebrafish by using high-frequency ultrafast ultrasound imaging, IEEE Transactions on Biomedical Engineering, 66(6), 1742-1751, 2018.
Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, Wickline SA, Yu X, Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI, American Journal of Physiology-Heart and Circulatory Physiology, 289(5), H1898-H1907, 2005.
Chen J, Song SK, Liu W, McLean M, Allen JS, Tan J, Wickline SA, Yu X, Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI, American Journal of Physiology-Heart and Circulatory Physiology, 285(3), H946-H954, 2003.
Choi WJ, Optical coherence tomography angiography in preclinical neuroimaging, Biomedical Engineering Letters, 9(3), 311-325, 2019.
Christensen DA, Ultrasound Bioinstrumentation, John Wiley and Sons, 1988.
Cobbold RS, Foundations of biomedical ultrasound, Oxford University Press, 2006.
Coleridge-Smith P, Labropoulos N, Partsch H, Myers K, Nicolaides A, Cavezzi A, Duplex ultrasound investigation of the veins in chronic venous disease of the lower limbs-UIP consensus document. Part I. Basic principles, European Journal of Vascular and Endovascular Surgery, 36(1), 53-61, 2007.
Collier P, Phelan D, Klein A, A test in context: myocardial strain measured by speckle-tracking echocardiography, Journal of the American College of Cardiology, 69(8), 1043-1056, 2017.
de la Torre JC, Cerebral hemodynamics and vascular risk factors: setting the stage for Alzheimer's disease, Journal of Alzheimer's Disease, 32(3), 553-567, 2012.
Delannoy B, Torguet R, Bruneel C, Bridoux E, Rouvaen JM, Lasota H, Acoustical image reconstruction in parallel‐processing analog electronic systems, Journal of Applied Physics, 50(5), 3153-3159, 1979.
Demeulenaere O, Bertolo A, Pezet S, Ialy-Radio N, Osmanski B, Papadacci C, Tanter M, Deffieux T, Pernot M, In vivo whole brain microvascular imaging in mice using transcranial 3D ultrasound localization microscopy, EBioMedicine, 79, 103995, 2022.
D'hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR, Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations, European Journal of Echocardiography, 1(3), 154-170, 2000.
Dizeux A, Gesnik M, Ahnine H, Blaize K, Arcizet F, Picaud S, Sahel JA, Deffieux T, Pouget P, Tanter, M, Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates, Nature Communications, 10(1), 1–9, 2019
Dorr A, Sahota B, Chinta LV, Brown ME, Lai AY, Ma K, Hawkes CA, McLaurin J, Stefanovic B, Amyloid-β-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease, Brain, 135(10), 3039-3050, 2012.
Driver ID, Traat M, Fasano F, Wise RG, Most small cerebral cortical veins demonstrate significant flow pulsatility: a human phase contrast MRI study at 7T, Frontiers in Neuroscience, 14, 415, 2020.
Dunmire B, Beach KW, Labs KH, Plett M, Strandness Jr DE, Cross-beam vector Doppler ultrasound for angle-independent velocity measurements, Ultrasound in Medicine & Biology, 26(8), 1213-1235, 2000.
Ekroll IK, Avdal J, Swillens A, Torp H, Løvstakken L, An extended least squares method for aliasing-resistant vector velocity estimation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(11), 1745-1757, 2016.
Epstein FH, Yang Z, Gilson WD, Berr SS, Kramer CM, French BA, MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 48(2), 399-403, 2002.
Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M, Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging, Nature, 527(7579), 499-502, 2015.
Evangelisti A, Schimmel K, Joshi S, Shah K, Fisch S, Alexander KM, Liao R, Morgado I, High-frequency ultrasound echocardiography to assess zebrafish cardiac function,” JoVE (Journal of Visualized Experiments), 157, 60976, 2020.
Evans DH, Colour flow and motion imaging, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(2), 241-253, 2010.
Evans DH, McDicken WN, Doppler ultrasound: physics instrumentation and clinical applications, John Wiley & Sons Incorporated, 1989.
Fleming AD, Xia X, McDicken WN, Sutherland GR, Fenn L, Myocardial velocity gradients detected by Doppler imaging, The British Journal of Radiology, 67(799), 679-688, 1994.
Frangi AF, Niessen WJ, Vincken KL, Viergever MA, Multiscale vessel enhancement filtering, In Medical Image Computing and Computer-Assisted Intervention—MICCAI’98: First International Conference Cambridge, MA, USA, 1(130-137), 1998.
Fujikura K, Luo J, Gamarnik V, Pernot M, Fukumoto R, Tilson III MD, Konofagou EE, A novel noninvasive technique for pulse-wave imaging and characterization of clinically-significant vascular mechanical properties in vivo, Ultrasonic Imaging, 29(3), 137-154, 2007.
Fung YC, Biomechanics: circulation, New York: Springer-Verlag, 229-233, 1997.
Garcia MJ, Thomas JD, Klein AL, New Doppler echocardiographic applications for the study of diastolic function, Journal of the American College of Cardiology, 32(4), 865-875, 1998.
Goergen CJ, Chen HH, Sakadžić SS, Srinivasan VJ, Sosnovik DE, Microstructural characterization of myocardial infarction with optical coherence tractography and two‐photon microscopy, Physiological Reports, 4(18), e12894, 2016.
Gong J, Wang LL, Xu Q, A three-step dealiasing method for Doppler velocity data quality control, Journal of Atmospheric and Oceanic Technology, 20(12), 1738-1748, 2003.
González-Rosa JM, Mercader N, Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish, Nature Protocols, 7(4), 782-788, 2012.
Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH, Left ventricular fibre architecture in man, Heart, 45(3), 248-263, 1981.
Greenberg SM, Cerebral amyloid angiopathy and vessel dysfunction, Cerebrovascular Diseases, 13, 42-47, 2002.
Greenleaf JF. Computerized tomography with ultrasound. Proc. IEEE 1983; 71:330-337.
Gupta A, Iadecola C, Impaired Aβ clearance: a potential link between atherosclerosis and Alzheimer’s disease, Frontiers in Aging Neuroscience, 7, 115, 2015.
Gupta V, Poss KD, Clonally dominant cardiomyocytes direct heart morphogenesis, Nature, 484(7395), 479-484, 2012.
Haft-Javaherian M, Fang L, Muse V, Schaffer CB, Nishimura N, Sabuncu MR, Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models, PLoS one, 14(3), e0213539, 2019.
Hamper UM, DeJong MR, Scoutt LM, Ultrasound evaluation of the lower extremity veins, Radiologic Clinics of North America, 45(3), 525-547, 2007.
Hein J, Lehmann LJ, Kossack M, Juergensen L, Fuchs D, Katus HA, Hassel D, Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury, PLoS One, 10(4), 0122665, 2015.
Heyde B, Cygan S, Choi HF, Lesniak-Plewinska B, Barbosa D, Elen A, Claus P, Loeckx D, Kaluzynski K, D’hooge J, Regional cardiac motion and strain estimation in three-dimensional echocardiography: A validation study in thick-walled univentricular phantoms, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(4), 668-682, 2012.
Ho-Chiang C, Huang H, Huang CC, High-frequency ultrasound deformation imaging for adult zebrafish during heart regeneration, Quantitative Imaging in Medicine and Surgery, 10(1), 66-75, 2020.
Hu D, Phan TT, Cherry GW, Ryan TJ, Dermal oedema assessed by high frequency ultrasound in venous leg ulcers, British Journal of Dermatology, 138(5), 815-820, 1998.
Hu N, Yost HJ, Clark EB, Cardiac morphology and blood pressure in the adult zebrafish, The Anatomical Record: An Official Publication of the American Association of Anatomists, 264(1), 1-12, 2001.
Huang CC, High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz, Physics in Medicine & Biology, 55(19), 5801, 2010.
Huang CC, Ameri H, DeBoer C, Rowley AP, Xu X, Sun L, Wang SH, Humayun MS, Sung KK, Evaluation of lens hardness in cataract surgery using high-frequency ultrasonic parameters in vitro, Ultrasound in Medicine & Biology, 33(10), 1609-1616, 2007a.
Huang CC, Chen PY, Peng PH, Lee PY, 40 MHz high‐frequency ultrafast ultrasound imaging, Medical Physics, 44(6), 2185-2195, 2017a.
Huang CC, Cheng HF, Zhu BP, Chen PY, Beh ST, Kuo YM, Huang CC, Studying arterial stiffness using high-frequency ultrasound in mice with Alzheimer disease, Ultrasound in Medicine & Biology, 43(9), 2054-2064, 2017b.
Huang CC, Su TH, Shih CC, High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration, Zebrafish, 12(1), 48-57, 2015.
Huang CC, Sun L, Dailey SH, Wang SH, Shung KK, High frequency ultrasonic characterization of human vocal fold tissue, The Journal of the Acoustical Society of America, 122(3), 1827-1832, 2007b.
Huang H, Chang WT, Huang CC, High-spatiotemporal-resolution visualization of myocardial strains through vector Doppler estimation: A small-animal study, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(6), 1859-1870, 2022.
Huang H, Chen PY, Huang CC, 40‐MHz high‐frequency vector Doppler imaging for superficial venous valve flow estimation, Medical Physics, 47(9), 4020-4031, 2020.
Huang WC, Hsieh YS, Chen IH, Wang CH, Chang HW, Yang CC, Ku TH, Yeh SR, Chuang YJ, Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish, Zebrafish, 7(3), 297-304, 2010.
Huang YH, Huang H, Mo FE, Huang CC, Estimation of mouse carotid arterial wall shear stress using high-frequency ultrasound imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 70(6), 474-485, 2023.
Jensen, J. A. Estimation of Blood Velocities Using Ultrasound. Cambridge University Press, 1996.
Joos P, Porée J, Liebgott H, Vray D, Baudet M, Faurie J, Tournoux F, Cloutier G, Nicolas B, Garcia D, High-frame-rate speckle-tracking echocardiography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(5), 720-728, 2018.
Kanno S, Lerner DL, Schuessler RB, Betsuyaku, T, Yamada, KA, Saffitz JE, Kovacs A, Echocardiographic evaluation of ventricular remodeling in a mouse model of myocardial infarction, Journal of the American Society of Echocardiography, 15(6), 601-609, 2002.
Kasai C, Namekawa K, Koyano A, Omoto R, Real-time two-dimensional blood flow imaging using an autocorrelation technique, IEEE Transactions on Sonics and Ultrasonics, 32(3), 458-464, 1985.
Ketterling JA, Aristizábal O, Yiu BYS, Turnbull DH, Phoon CK, Yu ACH, Silverman RH, High-speed, high-frequency ultrasound, in utero vector-flow imaging of mouse embryos, Scientific Reports, 7(1), 16658, 2017.
Kisler K, Nelson AR, Montagne A, Zlokovic BV, Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease, Nature Reviews Neuroscience, 18(7), 419-434, 2017.
Koth J, Maguire ML, McClymont D, Diffley L, Thornton VL, Beech J, Patient RK, Riley PR, Schneider JE, High-resolution magnetic resonance imaging of the regenerating adult zebrafish heart, Scientific Reports, 7(1), 2917, 2017.
Krueger PS, Gharib M, Silverman RH, The significance of vortex ring formation to the impulse and thrust of a starting jet, Physics of fluids, 15(5), 1271-1281, 2003.
Lafontant PJ, Behzad AR, Brown E, Landry P, Hu N, Burns AR, Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy, PloS One, vol. 8, no. 8, pp. 72388, Aug. 2013.
Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward S, Shanewise JS, Solomon SD, Spencer KT, Sutton MSJ, Stewart WJ, Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology, Journal of the American Society of Echocardiography, 18(12), 1440-1463, 2005.
Lay FY, Chen PY, Chen HF, Kuo YM, Huang CC, Ex vivo evaluation of mouse brain elasticity using high-frequency ultrasound elastography, IEEE Transactions on Biomedical Engineering, 66(12), 3426-3435, 2019.
Leclercq C, Faris O, Tunin R, Johnson J, Kato R, Evans F, Spinelli J, Halperin H, McVeigh E, Kass DA, Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block, Circulation, 106(14), 1760-1763, 2002.
Leow CH, Bazigou E, Eckersley RJ, Alfred CH, Weinberg PD, Tang MX, Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: Methods and initial in vitro and in vivo evaluation, Ultrasound in Medicine & Biology, 41(11), 2913-2925, 2015.
Li HC, Chen PY, Chen HF, Kuo YM, Huang CC, In vivo visualization of brain vasculature in Alzheimer's disease mice by high-frequency micro-doppler imaging, IEEE Transactions on Biomedical Engineering, 66(12), 3393-3401, 2019.
Li M, Kitamura A, Beverley J, Koudelka J, Duncombe J, Lennen R, Hansen MA, Marshall I, Platt B, Wiegand UK, Carare RO, Kalaria RN, Iliff JJ, Horsburgh K, Impaired glymphatic function and pulsation alterations in a mouse model of vascular cognitive impairment, Frontiers in Aging Neuroscience, 13, 930, 2022.
Liebeskind DS, Collateral circulation. Stroke, 34(9), 2279-2284, 2003.
Lin AJ, Liu G, Castello NA, Yeh JJ, Rahimian R, Lee G, Tsay V, Durkin AJ, Choi B, LaFeria FM, Chen Z, Green KN, Tromberg BJ, Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment, Neurophotonics, 1(1), 011005-011005, 2014.
Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K, Poss KD, Mikawa T, Stainier DYR, A dual role for ErbB2 signaling in cardiac trabeculation,” Development, 137(22), 3867-3875, 2010.
Liu JH, Jeng GS, Wu TK, P. C. Li PC, ECG triggering and gating for ultrasonic small animal imaging, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(9), 1590-1596, 2006.
Liu TY, Lee PY, Huang CC, Sun L, Shung KK, A study of the adult zebrafish ventricular function by retrospective Doppler-gated ultrahigh-frame-rate echocardiography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(9), 1827-1837, 2013.
Lockwood GR, Talman JR, Brunke SS, Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(4), 980-988, 1998.
Lowerison MR, Sekaran NVC, Zhang W, Dong Z, Chen X, Llano DA, Song P, Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse, Scientific Reports, 12(1), 1-11, 2022.
Lugrin J, Parapanov R, Kruegar T, Liaudet L, Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery, JoVE (Journal of Visualized Experiments), 150, e59591, 2019.
Luo J, Konofagou EE, High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(1), 240-248, 2008.
Lurie F, Kistner RL, Eklof B, Kessler D, Mechanism of venous valve closure and role of the valve in circulation: a new concept, Journal of Vascular Surgery, 38(5), 955-961, 2003.
Major RJ, Poss KD, Zebrafish heart regeneration as a model for cardiac tissue repair, Drug Discovery Today: Disease Models, 4(4), 219-225, 2017.
Mallart R, Fink M, Improved imaging rate through simultaneous transmission of several ultrasound beams, New Developments in Ultrasonic Transducers and Transducer Systems, 1733, 120-130, 1992.
Martinoli C, Pretolesi F, Crespi G, Bianchi S, Gandolfo N, Valle M, Derchi LE, Power Doppler sonography: clinical applications, European Journal of Radiology, 27, S133-140, 1998.
Meire HB, Farrant P. Basic ultrasound. John Wiley and Sons, 1995.
Mele D, Smarrazzo V, Pedrizzetti G, Capasso F, Pepe M, Severino S, Luisi GA, Maglione M, Ferrari R, Intracardiac flow analysis: techniques and potential clinical applications, Journal of the American Society of Echocardiography, 32(3), 319-332, 2019.
Mendoza E, Blättler W, Amsler F, Great saphenous vein diameter at the saphenous femoral junction and proximal thigh as parameters of venous disease class, European Journal of Vascular and Endovascular Surgery, 45(1), 76-83, 2013.
Meng G, Zhong J, Zhang Q, Wong JS, Wu J, Tsia KK, Ji N, Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo, Proceedings of the National Academy of Sciences, 119(23), e2117346119, 2022.
Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T, Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease, Proceedings of the national academy of sciences, 105(9), 3587-3592, 2008.
Milan DJ, Jones IL, Ellinor PT, MacRae CA, In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation,” American Journal of Physiology-Heart and Circulatory Physiology, 291(1), 269-273, 2006.
Mitchell DG, Color Doppler imaging: principles, limitations, and artifacts, Radiology, 177(1), 1-10, 1990.
Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T, The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging, Journal of the American Society of Echocardiography, 21(10), 1138-1144, 2008.
Mo LYL, Cobbold RS, A unified approach to modeling the backscattered Doppler ultrasound from blood, IEEE Transactions on Biomedical Engineering, 39(5), 450-461, 1992.
Montaldo G, Tanter M, Bercoff J, Benech N, Fink M, Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(3), 489-506, 2009.
Murakawa H, Muramatsu E, Sugimoto K, Takenaka N, Furuichi N, A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes, Measurement Science and Technology, 26(8), 085301, 2015.
Nagata Y, Wu VCC, Otsuji Y, Takeuchi M, Normal range of myocardial layer-specific strain using two-dimensional speckle tracking echocardiography, PLoS One, 12(6), e0180584, 2017.
Nam KH, Yeom E, Ha H, Lee SJ, Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry, The International Journal of Cardiovascular Imaging, 28, 69-77, 2012.
Nguyen J, Nishimura N, Fetcho RN, Iadecola C, Schaffer CB, Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries, Journal of Cerebral Blood Flow & Metabolism, 31(11), 2243-2254, 2011.
Nikolov S. I, Jensen JA, In-vivo synthetic aperture flow imaging in medical ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(7), 848-856, 2003.
O’Donnel M, Skovoroda AR, Shapo BM, Emelianov SY, Internal displacement and strain imaging using ultrasonic speckle tracking, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 41(3), 314-325, 1994.
Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X, Elastography: A quantitative method for imaging the elasticity of biological tissues, Ultrasonic Imaging 13(2), 111-134, 1991.
Papadacci C, Pernot M, Couade M, Fink M, Tanter M, High-contrast ultrafast imaging of the heart, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(2), 288-301, 2014.
Pappritz K, Grune J, Klein O, Hegemann N, Dong F, El-Shafeey M, Lin J, Kuebler WM, Kintscher U, Tschöpe C, Linthout SV, Speckle-tracking echocardiography combined with imaging mass spectrometry assesses region-dependent alterations, Scientific Reports, 10(1), 1-12, 2020.
Paris D, Patel N, DelleDonne A, Quadros A, Smeed R, Mullan M, Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neuroscience Letters, 366(1), 80-85, 2004.
Park MY, Jung SE, Byun JY, Kim JH, Joo GE, Effect of beam-flow angle on velocity measurements in modern Doppler ultrasound systems, American Journal of Roentgenology, 198(5), 1139-1143, 2012.
Pastorelli A, Torricelli G, Scabia M, Biagi E, Masotti L, A real-time 2-D vector Doppler system for clinical experimentation, IEEE Transactions on Medical Imaging, 27(10), 1515-1524, 2008.
Patten RD, Hall-Porter MR, Small animal models of heart failure: development of novel therapies, past and present, Circulation: Heart Failure, 2(2), 138-144, 2009.
Pavlin CJ, McWhae JA, McGowan HD, Foster FS, Ultrasound biomicroscopy of anterior segment tumors, Ophthalmology, 99(8), 1220-1228, 1992.
Pedersen MM, Pihl MJ, Haugaard P, Hansen JM, Hansen KL, Nielsen MB, Jensen JA. Comparison of real-time in vivo spectral and vector velocity estimation. Ultrasound in Medicine & Biology, 38(1), 145–151, 2012.
Popp RL, Wolfe SB, Hirata T, Feigenbaum H, Estimation of right and left ventricular size by ultrasound: A study of the echoes from the interventricular septum, The American Journal of Cardiology, 24(4), 523-530, 1969.
Porée J, Posada D, Hodzic A, Tournoux F, Cloutier G, Garcia D, High-frame-rate echocardiography using coherent compounding with Doppler-based motion-compensation, IEEE Transactions on Medical Imaging, 35(7), 1647-1657, 2016.
Poss KD, Wilson LG, Keating MT, Heart regeneration in zebrafish, Science, 298(5601), 2188-2190, 2002.
Pugsley MK, Tabrizchi R, The vascular system: An overview of structure and function, Journal of Pharmacological and Toxicological Methods, 44(2), 333-340, 2000.
Qiu XR, Wang MT, Huang H, Kuo LC, Hsu HY, Yang TH, Su FC, Huang CC, Estimating the neovascularity of human finger tendon through high-frequency utrasound micro-Doppler imaging, IEEE Transactions on Biomedical Engineering, 69(8), 2667-2678, 2022.
Ram R, Mickelsen DM, Theodoropoulos C, Blaxall BC, New approaches in small animal echocardiography: imaging the sounds of silence, American Journal of Physiology-Heart and Circulatory Physiology, 301(5), 1765-1780, 2011.
Renaudin N, Demené C, Dizeux A, Ialy-Radio N, Pezet S, Tanter M, Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale, Nature Methods, 19(8), 1004-1012, 2022
Ricci S, Diciotti S, Francalanci L, Tortoli P, Accuracy and reproducibility of a novel dual-beam vector Doppler method, Ultrasound in Medicine & Biology, 35(5), 829-838, 2009.
Ricci S, Ramalli A, Bassi L, Boni E, Tortoli P, Real-time blood velocity vector measurement over a 2-D region, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(2), 201-209, 2017.
Rubart M, Field LJ, Cardiac regeneration: repopulating the heart, Annual Review of Physiology, 68, 29-49, 2006.
Rubens DJ, Bhatt S, Nedelka S, Cullinan J, Doppler artifacts and pitfalls, Radiologic Clinics, 44(6), 805-835, 2006.
Rubin JM, Bude RO, Carson PL, Bree RL, Adler RS, Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology, 190(3), 853-859, 1994.
Rumberger JA, Behrenbeck T, Bell M, Breen J, Johnston DL, Holmes DR, Enriquez-Sarano M. Determination of ventricular ejection fraction: a comparison of available imaging method. In Mayo Clinic Proceedings, 72(9), 860-870, 1997.
Sandrin L, Catheline S, Tanter M, Hennequin X, Fink M, Time-resolved pulsed elastography with ultrafast ultrasonic imaging, Ultrasonic Imaging, 21(4), 259-272, 1999.
Sazak Ç, Nelson CJ, Obara B, The multiscale bowler-hat transform for blood vessel enhancement in retinal images, Pattern Recognition, 88, 739-750, 2019.
Schaefer A, Klein G, Brand B, Lippolt P, Drexler H, Meyer GP, Evaluation of left ventricular diastolic function by pulsed Doppler tissue imaging in mice, Journal of the American Society of Echocardiography, 16(11), 1144-1149, 2003.
Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D, Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion, PLoS Biology, 4(2), e22, 2006.
Schnabel K, Wu CC, Kurth T, Weidinger G, Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation, PLoS One, 6(4), 18503, 2011.
Sedmera D, Reckova M, deAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, Thompson RP, Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts, American Journal of Physiology-Heart and Circulatory Physiology, 284(4), 1152-1160, 2003.
Sehlin D, Fang XT, Cato L, Antoni G, Lannfelt L, Syvänen S, Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease, Nature Communications, 7(1), 10759, 2016.
Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK, Left ventricular structure and function: basic science for cardiac imaging, Journal of the American College of Cardiology, 48(10), 1988-2001, 2006.
Sengupta PP, Khandheria BK, Korinek J, Jahangir A, Yoshifuku S, Milosevic I, Belohlavek M, Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry, Journal of the American College of Cardiology, 49(8), 899-908, 2007.
Senyo SE, Mammalian heart renewal by pre-existing cardiomyocytes, Nature, 493(7432), 433-436, 2013.
Shattuck DP, Weinshenker MD, Smith SW, von Ramm OT, Explososcan: A parallel processing technique for high speed ultrasound imaging with linear phased arrays, The Journal of the Acoustical Society of America, 75(4), 1273-1282, 1984.
Shekhar A, Aristizábal O, Fishman GI, Phoon CKL, Ketterling JA, Characterization of vortex flow in a mouse model of ventricular dyssynchrony by plane-wave ultrasound using hexplex processing, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(3), 538-548, 2021.
Shi Y, Thrippleton MJ, Blair GW, Dickie DA, Marshall I, Hamilton I, Doubal FN, Chappell F, Wardlaw JM, Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow, Journal of Cerebral Blood Flow & Metabolism, 40(1), 85-99, 2020.
Shih CC, Chen PY, Ma T, Zhou Q, Shung KK, Huang CC, Development of an intravascular ultrasound elastography based on a dual-element transducer, Royal Society Open Science, 5(4), 180138, 2018.
Shih CC, Huang CC, Zhou Q, Shung KK, High-resolution acoustic-radiation-force-impulse imaging for assessing corneal sclerosis, IEEE Transactions on Medical Imaging, 32(7), 1316-1324, 2013.
Shih CC, Lai TY, Huang CC, Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: preliminary in vitro results, Ultrasonics, 70, 64-74, 2016.
Shimokawa H, Satoh K, Vascular function, Arteriosclerosis, Thrombosis, and Vascular Biology, 34(11), 2359-2362, 2014.
Shung KK, Diagnostic ultrasound: Imaging and blood flow measurements. CRC press, 2015.
Shung KK, Thieme GA. Ultrasonic scattering in biological tissues: CRC press, 1992.
Song P, Manduca A, Trzasko JD, Chen S, Ultrasound small vessel imaging with block-wise adaptive local clutter filtering, IEEE Transactions on Medical Imaging, 36(1), 251-262, 2016
Szabo TL, Diagnostic ultrasound imaging: inside out, Academic Press, 2004.
Tang CJ, Lee PY, Chuang YH, Huang CC, Measurement of local pulse wave velocity for carotid artery by using an ultrasound-based method, Ultrasonics, 102, 106064, 2020.
Tang, J., Postnov DD, Kilic K, Erdener SE, Lee B, Giblin JT, Szabo TL, Boas DA (2020). Functional ultrasound speckle decorrelation‐based velocimetry of the brain, Advanced Science, 7(18), 2001044, 2020.
Tanter M, Bercoff J, Sandrin L, Fink M, Ultrafast compound imaging for 2-D motion vector estimation: Application to transient elastography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(10), 1363-1374, 2002.
Tiran E, Ferrier J, Deffieux T, Gennisson JL, Pezet S, Lenkei Z, Tanter M, Transcranial functional ultrasound imaging in freely moving awake mice and anesthetized young rats without contrast agent, Ultrasound in Medicine & Biology, 43(8), 1679-1689, 2017.
Tong L, Gao H, Choi HF, D’hooge J, Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: A simulation study, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(8), 1654-1663, 2012.
Tong L, Ramalli A, Jasaityte R, Tortoli P, D’hooge J, Multi-transmit beam forming for fast cardiac imaging—Experimental validation and in vivo application, IEEE Transactions on Medical Imaging, 33(6), 1205-1219, 2014.
Tong L, Ramalli A, Tortoli P, Fradella G, Caciolli S, Luo J, D'hooge J., Wide-angle tissue Doppler imaging at high frame rate using multi-line transmit beamforming: An experimental validation in vivo, IEEE Transactions on Medical Imaging, 35(2), 521-528, 2016.
Thygesen K, Alpert JS, White HD, Universal definition of myocardial infarction, Circulation, 116(22), 2634-2653, 2007.
Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA, Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function, Circulation, 102(10), 1158-1164, 2000.
Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, D’hooge J, Aurigemma GP, Thomas JD, Badano LP, Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging, European Heart Journal-Cardiovascular Imaging, 16(1), 1-11, 2015.
Vogt M, Paul B, Scharenberg S, Scharenberg R, Ermert H, Development of a high frequency ultrasound skin imaging system: Optimization utilizing time domain reflectometry and network analysis, IEEE Symposium on Ultrasonics, 1, 744-747, 2003.
Vogt M, Scharenberg R, Moussa G, Sand M, Hoffmann K, Altmeyer P, Ermert H, A new high frequency ultrasound skin imaging system: Imaging properties and clinical in vivo results, Acoustical Imaging, 28, 137, 2007.
Udesen J, Jensen JA, Investigation of transverse oscillation method, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(5), 959-971, 2006.
Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, MacRae CA, Poss KD, The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion, Development, 138(16), 3421-3430, 2011.
Wang MY, Yang TH, Huang H, Hsu HY, Kuo LC, Su FC, Huang CC, Evaluation of hand tendon movement by using high-frequency ultrasound vector Doppler imaging, IEEE Transactions on Biomedical Engineering, 67(10), 2945-2952, 2020.
Wang KW, Huttner IG, Santiago CF, Kesteven SH, Yu ZY, Feneley MP, Fatkin D, Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models, Disease Models & Mechanisms, 10(1), 63-76, 2017.
Weber KT, From inflammation to fibrosis: a stiff stretch of highway, Hypertension, 43(4), 716-719, 2004.
Westerfield M, The zebrafish: a guide for the laboratory use of zebrafish (Brachydanio reriro): Inst. of Neuroscience, University of Oregon, 1993.
White RM, Transparent adult zebrafish as a tool for in vivo transplantation analysis, Cell Stem Cell, 2(2), 183-189, 2008.
Wielicka M, Neubauer-Geryk J, Kozera G, Bieniaszewski L, Clinical application of pulsatility index, Medical Research Journal, 5(3), 201-210, 2020.
Wilkens H, Regelson W, Hoffmeister FS, The physiologic importance of pulsatile blood flow, New England Journal of Medicine, 267(9), 443-446, 1962.
Willert CE, Gharib M, Digital particle image velocimetry, Experiments in Fluids, 10(4), 181-193, 1991.
Wittens C, Davies AH, Bækgaard N, Broholm R, Cavezzi A, Chastanet S, de Wolf M, Eggen C, Giannoukas A, Gohel M, Kakkos S, Lawson J, Noppeney T, Onida S, Pittaluga P, Thomis S, Toonder I, Vuylsteke M, Kolh P, de Borst GJ, Chakfé N, Debus S, Hinchliffe R, Koncar I, Lindholt J, de Ceniga MV, Vermassen F, Verzini F, De Maeseneer MG, Blomgren L, Hartung O, Kalodiki E, Korten E, Lugli M, Naylor R, Nicolini P, Rosales A, Editor's choice–management of chronic venous disease: clinical practice guidelines of the European Society for Vascular Surgery (ESVS), European Journal of Vascular and Endovascular Surgery, 49(6), 678-737, 2015.
Xu L, Pagano JJ, Haykowksy MJ, Ezekowitz JA, Oudit GY, Mikami Y, Howarth A, White JA, Dyck JRB, Anderson T, Paterson DI, Thompson RB, Layer-specific strain in patients with heart failure using cardiovascular magnetic resonance: not all layers are the same, Journal of Cardiovascular Magnetic Resonanc, 22(1), 1-16, 2020.
Yiu BYS, Lai SS, Yu ACH, Vector projectile imaging: Time-resolved dynamic visualization of complex flow patterns, Ultrasound in Medicine & Biology, 40(9), 2295-2309, 2014.
Yiu BYS, Lai SS, Yu ACH, Vector projectile imaging: Time-resolved dynamic visualization of complex flow patterns, Ultrasound in Medicine & Biology, 40(9), 2295-2309, 2014.
Yiu BYS, Yu ACH, Spiral flow phantom for ultrasound flow imaging experimentation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(12), 1840-1848, 2017.
Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S, Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circulation Research, 53(4), 502-514, 1983.
Zhang X, Yin X, Zhang J, Li A, Gong H, Luo Q, Zhang H, Gao Z, Jiang H, High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer's disease mice, National Science Review, 6(6), 1223-1238, 2019.
Zhou Y, Xiao H, Wu J, Zha L, Zhou M, Li Q, Wang M, Shi S, Li Y, Lyu L, Wang Q, Tu X, Lu Q, Type I diabetic Akita mouse model is characterized by abnormal cardiac deformation during early stages of diabetic cardiomyopathy with speckle-tracking based strain imaging, Cellular Physiology and Biochemistry, 45(4), 1541-1550, 2018.
Zlokovic BV, Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders, Nature Reviews Neuroscience, 12(12), 723-738, 2011.
校內:2028-08-16公開