| 研究生: |
陳怡傑 Chen, Yi-Jie |
|---|---|
| 論文名稱: |
平面四連桿與六連桿機構之無缺陷尺度合成 Defect-Free Dimensional Synthesis of Planar Four- and Six-Bar Linkages |
| 指導教授: |
黃文敏
Hwang, Wen-Miin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 順序缺陷 、尺度合成 、迴路缺陷 、分支缺陷 、平面四連桿機構 、平面六連桿機構 、最佳化 |
| 外文關鍵詞: | branch defect, planar four-bar linkage, planar six-bar linkage, optimization, order defect, circuit defect, Dimensional synthesis |
| 相關次數: | 點閱:143 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於在平面連桿機構尺度合成過程中,常發生順序、迴路與分支缺陷等問題,為了合成無缺陷之機構,須先探討各機構發生順序、迴路與分支缺陷之原因,進而建立其避開缺陷之限制式,於尺度合成過程中剔除有缺陷之機構。本文之目的在於探討平面四連桿與六連桿機構之無缺陷尺度合成,所提出之方法可適用於函數機構、路徑演生機構與剛體導引機構之尺度合成。
針對平面四連桿機構,本文探討其無缺陷尺度合成,包括幾何法與最佳化方法。針對平面四連桿機構通過兩個有限分離位置之合成問題,本文根據幾何作圖法的步驟,提出一套辨識流程,有系統地求得輸出桿的固定軸樞或動軸樞之可行解範圍。另外,針對無缺陷最佳化尺度合成,本文利用機構位置分析閉合解,建立最佳化尺度合成之目標函數-演生機構輸出桿或其耦桿點之位置與需求位置之無因次化平均誤差,並配合避開順序、迴路與分支缺陷之限制式,使合成結果為無缺陷機構。
針對具閉合解的平面六連桿機構,本文利用子四連桿組耦桿點曲線、雙連桿與死點構形之幾何特徵等機構學基本原理,探討各機構迴路與分支缺陷形成之原因,並建立其辨識方法,據以歸納出避免迴路與分支缺陷之限制式。針對此類機構之無缺陷尺度合成,本文採用最佳化尺度合成之方法,其目標函數亦利用機構位置分析閉合解建立之,即演生機構輸出桿或其耦桿點之位置與需求位置之無因次化平均誤差,然後加入消除順序、迴路與分支缺陷之限制式,於機構尺度合成過程中即能自動消除順序、迴路與分支缺陷,合成滿足所有設計需求之無缺陷機構。
針對無閉合解的平面六連桿機構,本文利用設計變數之消除與整合,透過已知條件-輸入桿與輸出桿的指定通過位置,來求得演生機構輸出桿之位置表示式,進而建立最佳化尺度合成之目標函數,即演生機構輸出桿或其耦桿點之位置與需求位置之無因次化平均誤差。並藉由機構之迴路與分支特性及死點構形特徵之探討,歸納出避開順序、迴路與分支缺陷之限制式。然後,以最佳化方法進行機構尺度合成,同時加入所歸納之避開缺陷限制式,使合成結果為符合設計需求之無缺陷機構。
Order, circuit, and branch defects are frequently encountered in the dimensional synthesis of linkages. In order to obtain mechanisms without defects, it is necessary to investigate the causes for occurring dead-center, order defects, circuit defects, and branch defects for each mechanism, and then propose suitable constraint equations for avoiding defects in the dimensional synthesis processes. The main purpose of this work is to propose a unified method for the defect-free dimensional synthesis of four- and six-bar linkages. The proposed method can be applied for the dimensional synthesis of four- and six-bar function generators, path generators, and motion generators.
The defect-free four-bar linkages are synthesized by using a geometric method and an optimization method, respectively. Based on an improved geometric method, an identification flowchart is proposed for obtaining feasible regions for the fixed pivot or moving pivot of the driven link of a four-bar linkage for a two-pose problem. For the defect-free optimal synthesis of four-bar linkages, the closed-form solutions for the positions of the output link of the mechanism are used to establish the objective function: the dimensionless average absolute deviations of the angular positions of the output link and/or the coupler point positions between the generated output and required positions. The constraint equations for avoiding order, circuit, and branch defects are included in the optimal synthesis, thus defect-free mechanisms are obtained.
For the dyadic six-bar linkages, using the concepts of the coupler curve of a four-bar linkage, the accessible region of a dyad, and the geometric feature of dead-center configurations, procedures are proposed for identifying the different circuits and branches of dyadic six-bar linkages. Using the characteristics of order, circuit, and branch defects, the constraint equations to avoid them are presented. The objective function is also established by using the position closed-form solutions of mechanisms. An optimization approach is then utilized for the defect-free dimensional synthesis of dyadic six-bar linkages.
For the nondyadic six-bar linkages, the explicit equations relating the generated output and specified variables are derived by eliminating and transforming angular variables on two loops and by using the specified values of input and output variables. Then, the objective function of the optimal synthesis is obtained. Using the characteristics of order, circuits, branches, and the geometric features of dead-center configurations for nondyadic six-bar linkages, the constraint equations for avoiding order, circuit, and branch defects are proposed for the defect-free optimal synthesis of nondyadic six-bar linkages.
01. Krishnamurty, S. and Turcic, D. A., 1988, “A General Method of Determining and Eliminating Branching in Planar Multiloop Mechanisms,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 412-422.
02. Krishnamurty, S. and Turcic, D. A., 1992, “Branching Determination in Nondyadic Planar Multiloop Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 114, pp. 245-250.
03. Grashof, F., 1883, Theoretische Mashinenlehre, Leipzig, pp.113-118.
04.Burmester, L., 1888, Lehrbuch der Kinematik, Felix, A., Leipzig.
05. Filemon, E., 1972, “Useful Ranges of Centerpoint Curves for Design of Crank-and-Rocker Linkages,” Mechanism and Machine Theory, Vol. 7, pp. 47-53.
06. Balli, S. S. and Chand, S., 2002, “Defects in Link Mechanisms and Solution Rectification,” Mechanism and Machine Theory, Vol. 37, pp. 851-876.
07. Chase, T. R. and Mirth, J. A., 1993, “Circuits and Branches of Single Degree-of-Freedom Planar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 115, pp. 223-230.
08. Litvin, L. F., 1980, “Application of Theorem of Implicit Function System Existence for Analysis and Synthesis of Linkages,” Mechanism and Machine Theory, Vol. 15, pp. 115-125.
09. Watanabe, K. and Funabashi, H., 1984, “Kinematic Analysis of Stephenson’s Six-Link Mechanisms (1st Report, Discrimination of Composition Loops),” Bulletin of JSME, Vol. 27, No. 234, pp. 2863-2870.
10. Yan, H. S. and Wu, L. I., 1988, “The Stationary Configurations of Planar Six-bar Kinematic Chains,” Mechanism and Machine Theory, Vol. 23, pp. 287-293.
11. Wu, L. I., 1990, “Modified Transmission Angles of Planar Linkage Mechanisms,” Proceedings of the Twentieth-first Biennial Mechanisms Conference, Chicago, pp. 131-140.
12. Kang, Y. H. and Yan, H. S., 1990, “Synthesizing Dead-Center and Uncertainty Configurations of Planar Six-Bar Linkages by Implicit Function Theorem,” Journal of the Chinese Society of Mechanical Engineers, Vol. 11, pp. 325-333.
13. 林欽麟,1990,具有不定構形的平面六連桿機構運動特性之研究,碩士論文,國立清華大學動力機械工程學系,新竹。
14. 車慧中,1991,平面六連桿與空間四連桿機構分支問題之研究,碩士論文,國立成功大學機械工程學系,台南。
15. Liu, Z. and Angeles, J., 1992, “The Properties of Constant-Branch Four-Bar Linkages and Their Applications,” ASME Transactions, Journal of Mechanical Design, Vol. 114, pp. 574-579.
16. Wu, L. I. and Chiang C. H., 1993, “Dead-Center Configurations of Planar Complex Eight-Bar Linkages,” Journal of the Chinese Society of Mechanical Engineers, Vol. 14, pp. 492-503.
17. Mirth, J. A. and Chase, T. R., 1993, “Circuit Analysis of Watt Chain Six-Bar Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 115, pp. 214-222.
18. Tsai, M. J. and Lee, H. W., 1994, “Generalized Evaluation for the Transmission Performance of Mechanisms,” Mechanism and Machine Theory, Vol. 29, pp. 607-618.
19. Tsai, M. J. and Lee, H. W., 1994, “The Transmissibility and Manipulability of Spatial Linakges,” ASME Transactions, Journal of Mechanical Design, Vol. 116, pp. 137-143.
20. Davis, H. P., Chase, T. R., and Mirth, J. A., 1994, “Circuit Analysis of Stephenson Chain Six-Bar Mechanisms,” Proceedings of the Twentieth-third Biennial Mechanisms Conference, Minneapolis, Minnesota, DE-Vol. 70, pp. 349-358.
21. Hunt, K. H., 1978, Kinematic Geometry of Mechanism, Oxford: Oxford University Press, pp. 37-38, pp. 225-230.
22. Midha, A., Zhao, Z. L., and Her, I., 1985, “Mobility Conditions for Planar Linkages Using Triangle Inequality and Graphical Interpretation,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, pp. 394-400.
23. Waldron, K. J. and Sreenivasan, S. V., 1994, “A Study of the Position Problem for Multi-Circuit Mechanisms,” Mechanism Synthesis and Analysis, ASME DE-Vol. 70, pp. 337-347.
24. Ting, K. L. and Dou, X., 1996, “Classification and Branch Identification of Stephenson Six-Bar Chains,” Mechanism and Machine Theory, Vol. 31, pp. 283-295.
25. Waldron, K. J. and Sreenivasan, S. V., 1996, “A Study of the Solvability of the Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 118, pp. 390-395.
26. 方正心,1996,平面六連桿機構之傳動性能,碩士論文,國立成功大學機械工程學系,台南。
27. 張文桐,2002,平面與空間連桿機構力量傳遞性能之研究,碩士論文,國立台灣海洋大學機械與輪機工程學系,基隆。
28. Jie, W. and Krishnamurty, S., 1997, “Generating Multiple Mechanism Configurations with Branch-Circuit Attributes,” Proceedings of the Fifth Applied Mechanisms and Robotics Conference, Cincinnati, Ohio, pp. 1-8.
29. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2000, “A Grobner-Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 122, pp. 431-438.
30. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2000, “A Closed-Form Approach to Coupler-Curves of Multi-Loop Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 122, pp. 464-471.
31. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2000, “Closed-Form Displacement Analysis of 8, 9 and 10-Link Mechanisms: Part I-8-Link 1-DOF Mechanisms,” Mechanism and Machine Theory, Vol. 35, pp. 821-850.
32. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2000, “Closed-Form Displacement Analysis of 8, 9 and 10-Link Mechanisms: Part II-9-Link 2-DOF and 10-Link 3-DOF Mechanisms,” Mechanism and Machine Theory, Vol. 35, pp. 851-869.
33. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2001, “Closed-Form Displacement Analysis of 10-Link 1-DOF Mechanisms: Part I-General Framework,” Mechanism and Machine Theory, Vol. 36, pp. 29-56.
34. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2001, “Closed-Form Displacement Analysis of 10-Link 1-DOF Mechanisms: Part II-Polynomial Solutions,” Mechanism and Machine Theory, Vol. 36, pp. 57-75.
35. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2001, “Closed-Form Displacement and Coupler Curve Analysis of Planar Multi-Loop Mechanisms Using Grobner Bases,” Mechanism and Machine Theory, Vol. 36, pp. 273-298.
36. 柯平山,2002,平面四連桿和六連桿機構迴路與分支之辨識,碩士論文,國立成功大學機械工程學系,台南。
37. 梁慧音,2002,史帝文生六連桿機構之電腦輔助運動分析,碩士論文,國立台灣科技大學機械工程學系,台北。
38. 翁維宏,2003,平面六連桿機構之分支辨識,碩士論文,國立成功大學機械工程學系,台南。
39. 葉韻靜,2003,驅動接頭在五桿迴路之Stephenson六連桿機構之運動分析,碩士論文,國立台灣科技大學機械工程學系,台北。
40. 黃文敏,張敬宏,陳怡傑,2004,“平面機構之迴路分析”,第七屆全國機構與機器設計學術研討會,pp. 132-139,台南。
41. 黃文敏,陳怡傑,2004,“平面六連桿機構死點構形之位置分析”,第七屆全國機構與機器設計學術研討會,pp. 140-147,台南。
42. Watanabe, K. and Katoh, H., 2004, “Identification of Motion Domains of Planar Six-Link Mechanisms of the Stephenson-Type,” Mechanism and Machine Theory, Vol. 39, pp. 1081-1099.
43. Chung, W. Y., 2005, “The Position Analysis of Assur Kinematic Chain with Five Links,” Mechanism and Machine Theory, Vol. 40, pp. 1015-1029.
44. Shai, O. and Polansky, I., 2006, “Finding Dead-Point Positions of Planar Pin-Connected Linkages Through Graph Theoretical Duality Principle,” ASME Transactions, Journal of Mechanical Design, Vol. 128, pp. 599-609.
45. Tsai, C. C. and Wang, L. C. T., 2006, “On the Dead-Centre Position Analysis of Stephenson Six-Link Linkages,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 220, pp. 1393-1404.
46. Tsai, C. C. and Wang, L. C. T., 2007, “Branch Identification and Motion Domain Analysis of Stephenson Type Six-Bar Type Linkages,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 221, pp. 589-604.
47. Foster, D. E. and Cipra, R. J., 2006, “Assembly Configurations of Planar Multi-Loop Mechanisms with Kinematic Limitations,” ASME Transactions, Journal of Mechanical Design, Vol. 128, pp. 747-754.
48. Waldron, K. J., 1975, “The Order Problem of Burmester Linkage Synthesis,” ASME Transactions, Journal of Engineering for Industry, Vol. 97, pp. 1405-1406.
49. Waldron, K. J., 1976, “Elimination of the Branch Problem in Graphical Burmester Mechanism Synthesis for Four Finitely Separated Positions,” ASME Transactions, Journal of Engineering for Industry, Vol. 98, pp. 176-182.
50. Waldron, K. J., 1977, “Graphical Solution of the Branch and Order Problems of Linkage Synthesis for Multiply Separated Positions,” ASME Transactions, Journal of Engineering for Industry, Vol. 99, pp. 591-597.
51. Waldron, K. J. and Strong, R. T., 1978, “Improved Solutions of the Branch and Order Problems of Burmester Linkage Synthesis,” Mechanism and Machine Theory, Vol. 13, pp. 199-207.
52. Waldron, K. J. and Stevensen, E. N., 1979, “Elimination of Branch, Grashof, and Order Defects in Path-Angle Generation and Function Generation Synthesis,” ASME Transactions, Journal of Mechanical Design, Vol. 101, pp. 428-437.
53. Chuang, J. C., Strong, R. T., and Waldron, K. J., 1981, “Implementation of Solution Rectification Techniques in an Interactive Linkage Synthesis Program,” ASME Transactions, Journal of Mechanical Design, Vol. 103, pp. 657-664.
54. Kazerounian, S. M. K. and Gupta, K. C., 1982, “Synthesis of Position Generating Crank-Rocker or Drag-Link Mechanisms,” Mechanism and Machine Theory, Vol. 17, pp. 243-247.
55. Angeles, J. and Rojas, A., 1983, “An Optimization Approach to the Branching Problem of Plane Linkage Synthesis,” Proceedings of the Sixth World Congress on Theory of Machines and Mechanisms, New Delhi, India, pp.120-123.
56. Tinubu, S. O. and Gupta, K. C., 1984, “Optimal Synthesis of Function Generators without the Branch Defect,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106, pp. 348-354.
57. 邱顯堂,顏鴻森,1984,“用受限制之變形多面體法合成四連桿函數機構”,中國機械工程學刊,第五卷,第一期,19-26頁。
58. Yan, H. S. and Chiou, S. T., 1987, “An Algorithm for the Optimal Synthesis of Complex Function Generations, ” Engineering Optimization, Vol. 12, pp. 75-88.
59. Angeles, J. and Bernier, A., 1987, “The Global Least-Square Optimization of Function-Generating Linkages,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, pp. 204-209.
60. Barker, C. R. and Baumann, J., 1987, “Characteristic Surfaces for Three Position Motion Generation with Planar Four-Bar Mechanism,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 104-109.
61. Barker, C. R. and Tso, P. L., 1988, “Three Position Path Generation Synthesis of Plane Four-Bar Mechanisms Using SYNTRA,” Proceedings of the Twentieth Biennial Mechanisms Conference, Kissimmee, Florida, pp. 279-286.
62. Barker, C. R. and Tso, P. L., 1989, “Characteristic Surfaces for Three Position Function Generation with Planar Four-Bar Mechanism,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 104-109.
63. Tso, P. L. and Hsiao, F. T., 1991, “ The Plane for Two Position Motion Generation with Planar Four-Bar Mechanisms,” Proceedings of the Eighth World Congress on Theory of Machines and Mechanisms, Prague, Czechoslovakia, pp. 981-984.
64. Tso, P. L. and Feng, T. H., 1993, “ Position Synthesis for Motion Generation with Solution Plane,” Proceedings of the Third Applied Mechanisms and Robotics Conference, Cincinnati, Ohio, AMR-93-069-01.
65. Tso, P. L., 1995, “ A Computer-Based Model for Three Position Slider-Crank Mechanisms Synthesis,” Proceedings of the Ninth World Congress on Theory of Machines and Mechanisms, Milan, Italy, pp. 134-138.
66. Waldron, K. J., 1994, “Solution Rectification in Three Position Motion Generation Synthesis,” ASME Transactions, Journal of Mechanical Design, Vol. 116, pp. 88-91.
67. Mirth, J. A. and Chase, T. R., 1995, “Circuits Rectification for Four Precision Positions Synthesis of Stephenson Six-Bar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 117, pp. 644-646.
68. Bawab, S., Kinzel, G. L., and Waldron, K. J., 1996, “Rectified Synthesis of Six-Bar Mechanisms with Well-Defined Transmission Angles for Four-Position Motion Generation,” ASME Transactions, Journal of Mechanical Design, Vol. 118, pp. 377-383.
69. Bawab, S. and Li, H., 1997, “A New Circuit Identification Method in Four Position Four-Bar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 119, pp. 417-419.
70. Beloiu, A. S. and Gupta, K. C., 1997, “Circuit Defect Elimination in Function Generating Mechanism,” Proceedings of the Fifth Applied Mechanisms and Robotics Conference, Cincinnati, Ohio, pp. 1-12.
71. Beloiu, A. S. and Gupta, K. C., 1997, “A Unified Approach for the Investigation of Branch and Circuits Defects,” Mechanism and Machine Theory, Vol. 32, pp. 539-557.
72. Beyer, W., 1939, “Das Fadengeber-Getriebe bei Nähmaschinen,” Getriebetechnik, Vol. 7, pp. 309-312.
73. Mabie, H. H. and Reinholtz, C. F., 1987, Mechanisms and Dynamics of Machinery, John Wiley & Sons, New York, pp. 565-566.
74. Erdman, A. G., Sandor, G. N., and Kota, S., 2001, Mechanism Design : Analysis and Synthesis, Prentice Hall, New Jersey.
75. Chiang, C. H., 2000, Kinematics and Design of Planar Mechanisms, Krieger Pubishing, Malabar, Florida.
76. Kraemer, O., 1959, Getriebelehre, Verlag G., Braun, Karlsruhe, example 1.
77. Freudenstein, F., 1959, “Structural Error Analysis in Plane Kinematic Synthesis,” ASME Transactions, Journal of Engineering for Industry, Vol. 81, pp. 15-22.
78. Hartenberg, R. S. and Denavit, J., 1964, Kinematics Synthesis of Linkages, McGraw-Hill, New York, p. 314.