簡易檢索 / 詳目顯示

研究生: 王建武
Wang, Chien-Wu
論文名稱: 微分再生核近似法於複合層樑上之應用
Analysis of laminated beams with the differential reproducing kernel approximation
指導教授: 王永明
Wang, Yong-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 111
中文關鍵詞: 微分再生核近似法
外文關鍵詞: differential reproducing kernel approximation
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以三維漸近展開的解析模式來分析複合層樑的力學行為。基本作法是視疊層樑沿厚度方向為異質性材料所組成的構件,先從Hellinger- Reissner ( H-R ) 能量泛函式出發,不對位移場及應力場先預作假設, 將平面應力場表為位移場及橫向應力場,再代入泛函能量式中,對泛函式中的位移場及橫向應力場做變分,根據泛函能量極值條件,可以求得二維彈性力學基本方程式。接著再將各場量施以適當的無因次化,設立輔助變數使得剪力變形的影響于首階即出現。並將位移與應力分量對一個與板厚相關之微小參數作漸進展開,可得漸進展開模式中的各階層控制方程式。接著再搭配「微分再生核近似法」原理,處理高階微分及複雜迭代的問題。和一般數值方法不同的是,微分再生核近似法在求解形狀函數之高階導數時具有高度的效率及精確性,很適合分析漸進展開後具有高階微分狀態的各階層控制方程式。
    本文最後選取了一複合層樑來分別施加三種不同形式的載重及邊界支承。而所得之結果和聯立O.D.E解析解相比較後,都證明我們可以得到合理準確的數據。故漸進展開解析理論搭配再生核近似法作數值分析,實為一良好的選擇。

    In this project, we analyze the mechanics of laminated beams with 3D asymptotic analysis method. The basic elements are laminated beams which were composed with anisotropic materials in the direction of the thickness. The analysis is from the Hellinger – Reissner (H-R) general energy equation and not assuming the displacement and stress field in advance. Then, displacement and lateral stress fields were represented instead of plane stress field in the H-R equation. In the next step, calculus of variations is adopted for displacement and lateral stress fields. The 2D elastic basic equations were obtained according to the extreme value of the general energy equation after. All fields were nondimensionlized appropriately and one assistant variable was adopted for highlighting the influence of shear deformation in the first-order equations. And the asymptotic analysis about one slight parameter related to the thickness of the beam was performed to the displacement and components of stress, therefore, the governing equations of each order were obtained. Finally, the differential reproducing kernel approximation method was collocated to handle high-order differentiation and complicated iteration problems. This numerical analysis was provided with efficiency and accuracy.
    In the end of this paper, one laminated beam with three different kinds of loading and boundary support individually was analyzed. After the numerical result was compared with the exact solution of terraced O.D.E. (ordinary differential equation), it proved that the data one gained finally was reasonable and accurate. Therefore, to perform a numerical analysis with asymptotic development and the differential reproducing kernel method is the suitable performance.

    目錄 摘要 III 誌謝 IV 目錄 V 表目錄 VII 圖目錄 IX 第一章 緒論 1 第二章 複合層樑受垂直載重的應力分析 5 2-1. 問題陳述與解析模式 5 2-2. 無因次化 9 2-3. 含剪力修正之漸進展開模式 12 2-4. 漸進展開各階層的解析 15 2-4-1. 階各場量之求解 15 2-4-2. 階各場量之求解 18 第三章 微分再生核近似法之原理摡述及應用 21 3-1. 離散的再生核近似 21 3-2. 再生核形狀函數的微分 24 3-3. 將漸進展開之各階控制方程式代入微分再生核近似求解 27 3-3-1. 階的漸進展開方程式 27 3-3-2. 階的漸進展開方程式 29 第四章 應用例題 30 4-1. 分析例題(一) 30 4-2. 分析例題(二) 33 4-3. 分析例題(三) 36 第五章 結論 39 參考文獻 41 表 43 圖 79 附錄A 材料係數 88 附錄B 聯立O.D.E之解析解 89 表目錄 層樑(90/0/90/90/0/90) 表(1-1-1)承受均佈載重之中平面橫向位移(S-S) 43 表(1-1-2)承受均佈載重之軸向應力(S-S) 44 表(1-1-3)承受均佈載重之剪應力(S-S) 45 表(1-1-4)承受均佈載重之壓應力(S-S) 46 表(1-2-1)承受均佈載重之中平面橫向位移(C-F) 47 表(1-2-2)承受均佈載重之軸向應力(C-F) 48 表(1-2-3)承受均佈載重之剪應力(C-F) 49 表(1-2-4)承受均佈載重之壓應力(C-F) 50 表(1-3-1)承受均佈載重之中平面橫向位移(C-S) 51 表(1-3-2)承受均佈載重之軸向應力(C-S) 52 表(1-3-3)承受均佈載重之剪應力(C-S) 53 表(1-3-4)承受均佈載重之壓應力(C-S) 54 表(2-1-1)承受Sin波載重之中平面橫向位移(S-S) 55 表(2-1-2)承受Sin波載重之軸向應力(S-S) 56 表(2-1-3)承受Sin波載重之剪應力(S-S) 57 表(2-1-4)承受Sin波載重之壓應力(S-S) 58 表(2-2-1)承受Sin波載重之中平面橫向位移(C-F) 59 表(2-2-2)承受Sin波載重之軸向應力(C-F) 60 表(2-2-3)承受Sin波載重之剪應力(C-F) 61 表(2-2-4)承受Sin波載重之壓應力(C-F) 62 表(2-3-1)承受Sin波載重之中平面橫向位移(C-S) 63 表(2-3-2)承受Sin波載重之軸向應力(C-S) 64 表(2-3-3)承受Sin波載重之剪應力(C-S) 65 表(2-3-4)承受Sin波載重之壓應力(C-S) 66 表(3-1-1)承受梯度載重之中平面橫向位移(S-S) 67 表(3-1-2)承受梯度載重之軸向應力(S-S) 68 表(3-1-3)承受梯度載重之剪應力(S-S) 69 表(3-1-4)承受梯度載重之壓應力(S-S) 70 表(3-2-1)承受梯度載重之中平面橫向位移(C-F) 71 表(3-2-2)承受梯度載重之軸向應力(C-F) 72 表(3-2-3)承受梯度載重之剪應力(C-F) 73 表(3-2-4)承受梯度載重之壓應力(C-F) 74 表(3-3-1)承受梯度載重之中平面橫向位移(C-S) 75 表(3-3-2)承受梯度載重之軸向應力(C-S) 76 表(3-3-3)承受梯度載重之剪應力(C-S) 77 表(3-3-4)承受梯度載重之壓應力(C-S) 78 圖目錄 圖(2-1) 複合層樑結構示意圖 5 圖(4-1) S-S承受均佈載種之軸向應力 79 圖(4-2) S-S承受均佈載種之剪應力 79 圖(4-3) C-F承受均佈載種之軸向應力 80 圖(4-4) C-F承受均佈載種之剪應力 80 圖(4-5) C-S承受均佈載種之軸向應力 81 圖(4-6) C-S承受均佈載種之剪應力 81 圖(4-7) S-S承受Sin波載種之軸向應力 82 圖(4-8) S-S承受Sin波載種之剪應力 82 圖(4-9) C-F承受Sin波載種之軸向應力 83 圖(4-10) C-F承受Sin波載種之剪應力 83 圖(4-11) C-S承受Sin波載種之軸向應力 84 圖(4-12) C-S承受Sin波載種之剪應力 84 圖(4-13) S-S承受梯度載種之軸向應力 85 圖(4-14) S-S承受梯度載種之剪應力 85 圖(4-15) C-F承受梯度載種之軸向應力 86 圖(4-16) C-F承受梯度載種之剪應力 86 圖(4-17) C-S承受梯度載種之軸向應力 87 圖(4-18) C-S承受梯度載種之剪應力 87

    參考文獻

    [1].Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P., ” Meshless
    method: An overview and recent developments.” Comput. Methods Appl. Mech. Engrg. Vol. 139, pp.3-47 (1996)
    [2]. Hoff , N. J. , ” Strength of Laminates and Sandwich Structural Elements ” Chapter 1, Engineering Laminates, edited by Dietz, A. G. H., John Wiley & Sons, New York (1949)
    [3]. Khdeir, A. A., Reddy, J. N. and Frederick, D. M.,” A Study of Bending, Vibreation and BuckLing of Cross-ply circular Cylindrical shells with Various Shell theories ”, Int. J. Engeg. Sci. 27, pp.1337-1351 (1989)
    [4]. Librescu, L. ,Khdeir, A. A. and Frederick, D. M. ” A Shear Deformable Theory of Laminated Composite Shallow Shell-Type Panels and their Response Analysis I ” Free Vibration and Buckling. Acta Mech. 76, pp. 1-33 (1989)
    [5]. Lo. K. H., Christensen. R. M., and Wu. E. M., ” A high order theory of plate deformation. Part2: Laminated plates, ” J. Appl. Mech., ASME, Vol. 44 (1977)
    [6]. Onate, E., S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco, ” A Stabilized Finite Point Method for Analysis of Fluid Mechanics Problem ”, Computer Methods in Applied Mechanics and Engineering Vol. 139, pp. 315-346 (1996)
    [7]. Pagono, N. J.,” Analysis of the Flexture Test of Bidirectional Composites, ” J.Compos. Mater., Vol. 1 (1967)
    [8]. Paris R.B. & Wood A.D..,” Asymptotics of high order differential equations ”, Harlow, Essex, England, Longman Scientific & Technical , New York (1986)
    [9]. R. Rwo Valisetty, Lawrence W. Rehfield.,” A theory for stress analysis of composite laminates ”, Washington, D. C. (1983)
    [10].Reddy, J. N., ” Exact Solution of Moderatively Thick Laminated Shells ”, J. Engrg. Mech. ASCE 110, pp.794-808 (1984)
    [11].Reddy, J. N. and Liu, C. F. ” A Higher-Order Shear Deformation Theory of Laminated Elastic Shells ”, Int. J. Engrg. Sci. 23, pp.319-330 (1985)
    [12].Reddy, J. N. and N.D. Phan., ” Dynamic analysis of laminated plates using a higher-order theory ” , Washington, D. C. (1984)
    [13].Tarn, J. Q. and Wang, Y. M., ” A Asympotic Theory for Dynamic Response of Anisotropic Inhomogeneous and Laminated Plates, ” Int. J. Solids Struct., Vol.31 (1994)
    [14].Timoshenko, S. P. and Goodier, J. N.,” Theory of Elasticity ”, 3rded., Mcgraw Hill Book Co. New York (1970)
    [15].Timoshenko,S. Woinowsky-Krieger.,” Theory of Plates and Shells ”, McGraw-Hill , New York (1959)
    [16].Verhulst. F. ” Asymptotic analysis from theory to application ”, Berlin , Springer-Verlag, New York (1979)
    [17].Wang, Y. M. and Tarn, J. Q., ” A Three-Dimensional Analysis for Anisotropic Inhomogeneous and Laminated Plates ”, Int. J. Solids Struct. Vol. 31 (1994)
    [18].Whitney, J. M., ”Structure Analysis of Laminates Anisotropic Plates,” Technomic , Publishing Co. Lancaster , Pa (1987)
    [19].Wing - Kam Liu , Shaofan Li , Ted Belytschko , ” Moving least-square
    reproducing kernel methods ” (I) Methodology and convergence. Comput. Methods Appl. Mech. Engrg. 143 , pp.113-154 (1997)
    [20].錢偉長 , ’’彈性力學’’ , 亞東書局 (1991)

    下載圖示 校內:立即公開
    校外:2002-08-12公開
    QR CODE