簡易檢索 / 詳目顯示

研究生: 陳玲麗
Chan, Leng-Lai
論文名稱: 在窄化所誘導的腹主動脈瘤豬模式中間質金屬酶及其抑制蛋白的特異性表現
The Differential Expression of Matrix Metalloproteinases and Tissue Inhibitors of Matrix Metalloproteinases in a Porcine Model of Coarctation-induced Abdominal Aortic Aneurysm
指導教授: 江美治
Jiang, Meei-Jyh
共同指導教授: 林寶彥
Lin, Pao-Yen
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 89
中文關鍵詞: 間質金屬蛋白酶腹主動脈瘤間質金屬蛋白酶之抑制蛋白
外文關鍵詞: Matrix Metalloproteinases, Abdominal Aortic Aneurysm, TIMPs
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腹主動脈瘤是一個嚴重威脅生命的心血管疾病,在65歲以上的人口,其發生率約4-8%。腹主動脈瘤通常並無明顯的症狀,但一旦破裂,它的致死率超出80%,為臨床上嚴重的問題。截至目前,外科手術是治療腹主動脈瘤唯一有效的方法,因此急需新的治療方法。在手術中取得的腹主動脈瘤組織有三個主要特徵:組織呈現慢性發炎的狀態,細胞外間質的破壞性重塑及血管平滑肌細胞的減少。但是腹主動脈瘤的形成及其之後的演變過程機制仍然不詳。為了進一步解開這個謎題,我們的實驗室在蘭嶼迷你豬以人工血管在腎動脈下方的腹主動脈進行窄化進而誘發腹主動脈瘤生成,建立了一個新的動物模式。在此模式中,窄化手術12週後,在血管遠端會形成腹主動脈瘤。間質金屬蛋白酶(MMP)會分解維持血管壁彈性及強度的細胞外間質蛋白,包括彈性蛋白和膠原蛋白。在正常的生理情況下,間質金屬蛋白酶的活性會受內生性的間質金屬蛋白酶之抑制蛋白(TIMPs)調控。因此,本研究的目的是探討在窄化誘發腹主動脈瘤生成的過程中,間質金屬蛋白酶和其抑制蛋白在不同的時間點與腹主動脈不同部位的特異性表現。我偵測間質金屬蛋白酶和其抑制蛋白在窄化4週,8週和12週後,在血管窄化的遠端和近端的表現量,並與腎動脈上方的腹主動脈進行對照。對照組則是接受同樣的手術程序但未進行窄化。各種間質金屬蛋白酶的基因表現以即時聚合酶連鎖反應去定量。在窄化後4週,MMP3, MMP7, MMP9 和MMP13mRNA在遠端血管的表現量較近端、腎動脈上端或兩者,有顯著性上升。此外,實驗組的MMP19 mRNA在遠端血管的表現量相較於另兩段和對照組都有明顯的增加。相反地,MMP15 mRNA則在腎動脈上端較窄化近端與對照組有明顯的上升。在偵測MMP基因表現量後,我以西方墨點法偵測MMP2,MMP9和MMP13的蛋白質表現量。結果顯示,MMP2與MMP13在各段腹主動脈中維持穩定的表現量,並未因窄化而有顯著的變化。MMP9的蛋白表現量與其活性在窄化遠端呈現上升的趨勢,由於豬個體間的差異性甚大,在統計上並不顯著。相對地,MMP9的蛋白與活性在腎動脈上端的腹主動脈皆無法偵測到。另外,在四個TIMPs當中, 腎動脈上端的腹主動脈的TIMP2和TIMP3 mRNA表現量在窄化4週後較另兩段的腹主動脈顯著地高,其中,TIMP3 mRNA的表現量在窄化8週後仍維持在較高的值。但TIMP3的蛋白質表現量並未因血管窄化而有明顯的變化。以螢光雙染去檢視表現MMP9的細胞,實驗結果顯示浸潤到血管壁外膜層的巨噬細胞多數會表現MMP9,以窄化8週後最明顯。相反地,在血管壁中的平滑肌細胞並未偵測到MMP9的表現。TIMP3的螢光染色結果顯示,TIMP3分佈在血管中層的外圍與外膜層,尤以血管壁外膜層的小血管最為明顯。此外,在窄化遠端的血管壁外膜層的小血管,可觀察到MMP9和TIMP3的共同表現。由於共同表現的區域不多,推測MMP9與TIMP3有限的相互作用並不足以保護血管不至於膨大。綜合上述的結果,在窄化所誘發的腹主動脈瘤生成的過程中,各種MMPs與TIMPs隨著時間與血管壁的部位而有不同的變化,這些變化可能促使腹主動脈瘤的形成與(或)演變。

    Abdominal Aortic Aneurysm (AAA) is a life-threatening cardiovascular disease that affects 4% to 8% of the population over 65 years old. AAA usually remains asymptomatic but causes a mortality rate over 80% when rupture occurs. Up to now, surgery is the sole effective treatment for AAA and new therapeutics are urgently needed. AAA tissues obtained at surgery are characterized by chronic inflammation, destructive remodeling of the extracellular matrix (ECM) and depletion of vascular smooth muscle cells (VSMCs). However, mechanisms underlying the initial AAA formation and further progression remain poorly understood. To address this problem, our laboratory established a coarctation-induced AAA model in Taiwanese Lanyu mini pigs, in which coarctation of an infrarenal abdominal aorta (AA) segment for 12 weeks induces AAA formation in the distal segment. Matrix metalloproteinases (MMPs) degrade ECM proteins, particularly elastin and collagen which maintain the elasticity and strength of the aorta. MMP activities are in turn regulated by endogenous tissue inhibitors of matrix metalloproteinases (TIMPs). Therefore, this study is aimed to examine the temporal and spatial expression of MMPs and TIMPs during coarctation-induced AAA formation. The expression of MMPs and TIMPs was examined at 4 weeks (4w), 8 weeks (8w), and 12 weeks (12w) post-coarctation in the AA segments proximal and distal to coarctation using suprarenal AA segment as a reference. Sham group which received similar surgical procedure without coarctation was used as the control. Via real-time polymerase chain reaction (PCR) analysis, the mRNA levels of MMP3, MMP7, MMP9, MMP13, and MMP19 were elevated in the distal AA segment at 4w compared to either one or both of the other two segments. In addition, MMP19 mRNA was elevated in the experimental group at 4w compared with sham group. In contrast, MMP15 mRNA exhibited an increase in the suprarenal AA segment compared with the proximal AA segment and sham group at 4w post-coarctation. Protein expression of MMP2, MMP9 and MMP13 was further investigated with immunoblotting. No apparent change was detected for MMP2 and MMP13 which are constitutively expressed in the aorta. An apparent increase was detected for MMP9 expression and gelatinolytic activity in the distal AA segment over the investigation period though the increase did not reach significant level as a result of large variation among experimental animals. In contrast, neither MMP9 protein expression nor gelatinolytic activity was detected in the suprarenal AA segment. Among four TIMPs, mRNA expression of TIMP2 and TIMP3 were upregulated in the suprarenal AA at 4w post-coarctation compared with the other two segments and TIMP3 mRNA remained high at 8w post-coarctation. In contrast, no change in TIMP3 protein level was detected with immunoblotting after coarctation. Double immunofluorescence staining was performed to detect the cell types that express MMP9 and/or TIMP3. The results showed that MMP9 was colocalized with infiltrated macrophages in the adventitia at 4w, 8w and 12w post-coarctation. In contrast, no MMP9 was detected in VSMCs of the aortic wall. Immunoreactivity of TIMP3 was detected in the outer media and the adventitia of all AA segments of the sham group and was prominent in the vasa vasorum. Co-localization of MMP9 and TIMP3 was observed in some vasa vasorum of the distal AA segment, however, the co-localization rate was low and may not be sufficient to protect the distal AA from aneurysm progression. Overall, these results clearly showed that MMPs and TIMPs are differentially expressed during coarctation-induced AAA formation and these changes may contribute to AAA development and/or progression.

    Acknowledgements .........I Chinese Abstract .........II English Abstract ........Ⅳ Table of Contents ...........Ⅵ Introduction ..........1 Objective .........12 Materials and Methods ........13 Result ...........43 Discussion ..........48 References .........56 Table 1 ..........64 Figures ..........66 Appendix 1 ...........89

    1 Hollier, L. H., Taylor, L. M. & Ochsner, J. Recommended indications for operative treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the Society for Vascular Surgery and the North American Chapter of the International Society for Cardiovascular Surgery. Journal of vascular surgery 15, 1046-1056 (1992).
    2 Aggarwal, S., Qamar, A., Sharma, V. & Sharma, A. Abdominal aortic aneurysm: A comprehensive review. Experimental and clinical cardiology 16, 11-15 (2011).
    3 Golledge, J., Muller, J., Daugherty, A. & Norman, P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arteriosclerosis, thrombosis, and vascular biology 26, 2605-2613, doi:10.1161/01.ATV.0000245819.32762.cb (2006).
    4 Ernst, C. B. Abdominal aortic aneurysm. The New England journal of medicine 328, 1167-1172, doi:10.1056/NEJM199304223281607 (1993).
    5 Baxter, B. T., Terrin, M. C. & Dalman, R. L. Medical management of small abdominal aortic aneurysms. Circulation 117, 1883-1889, doi:10.1161/CIRCULATIONAHA.107.735274 (2008).
    6 United Kingdom, E. T. I. et al. Endovascular versus open repair of abdominal aortic aneurysm. The New England journal of medicine 362, 1863-1871, doi:10.1056/NEJMoa0909305 (2010).
    7 Wagenseil, J. E. & Mecham, R. P. Vascular extracellular matrix and arterial mechanics. Physiological reviews 89, 957-989, doi:10.1152/physrev.00041.2008 (2009).
    8 Krettek, A., Sukhova, G. K. & Libby, P. Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arteriosclerosis, thrombosis, and vascular biology 23, 582-587, doi:10.1161/01.ATV.0000064372.78561.A5 (2003).
    9 Kelleher, C. M., McLean, S. E. & Mecham, R. P. Vascular extracellular matrix and aortic development. Current topics in developmental biology 62, 153-188, doi:10.1016/S0070-2153(04)62006-0 (2004).
    10 Shekhonin, B. V., Domogatsky, S. P., Muzykantov, V. R., Idelson, G. L. & Rukosuev, V. S. Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics. Collagen and related research 5, 355-368 (1985).
    11 Sonesson, B., Hansen, F. & Lanne, T. Abdominal aortic aneurysm: a general defect in the vasculature with focal manifestations in the abdominal aorta? Journal of vascular surgery 26, 247-254 (1997).
    12 Sobey, G. Ehlers-Danlos syndrome - a commonly misunderstood group of conditions. Clinical medicine 14, 432-436, doi:10.7861/clinmedicine.14-4-432 (2014).
    13 Kuivaniemi, H. et al. Update on abdominal aortic aneurysm research: from clinical to genetic studies. Scientifica 2014, 564734, doi:10.1155/2014/564734 (2014).
    14 Gomez, D. & Owens, G. K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovascular research 95, 156-164, doi:10.1093/cvr/cvs115 (2012).
    15 Kuivaniemi, H. et al. Familial abdominal aortic aneurysms: collection of 233 multiplex families. Journal of vascular surgery 37, 340-345, doi:10.1067/mva.2003.71 (2003).
    16 Baumann, F., Makaloski, V. & Diehm, N. [Aortic aneurysms and aortic dissection: epidemiology, pathophysiology and diagnostics]. Der Internist 54, 535-542, doi:10.1007/s00108-012-3217-0 (2013).
    17 Abraham, M., Shapiro, S., Lahat, N. & Miller, A. The role of IL-18 and IL-12 in the modulation of matrix metalloproteinases and their tissue inhibitors in monocytic cells. International immunology 14, 1449-1457 (2002).
    18 Ohki, T. et al. Initial results of wireless pressure sensing for endovascular aneurysm repair: the APEX Trial--Acute Pressure Measurement to Confirm Aneurysm Sac EXclusion. Journal of vascular surgery 45, 236-242, doi:10.1016/j.jvs.2006.09.060 (2007).
    19 Manning, M. W., Cassi, L. A., Huang, J., Szilvassy, S. J. & Daugherty, A. Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vascular medicine 7, 45-54 (2002).
    20 Lederle, F. A., Nelson, D. B. & Joseph, A. M. Smokers' relative risk for aortic aneurysm compared with other smoking-related diseases: a systematic review. Journal of vascular surgery 38, 329-334 (2003).
    21 Brady, A. R. et al. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110, 16-21, doi:10.1161/01.CIR.0000133279.07468.9F (2004).
    22 Wilmink, T. B., Quick, C. R. & Day, N. E. The association between cigarette smoking and abdominal aortic aneurysms. Journal of vascular surgery 30, 1099-1105 (1999).
    23 Thompson, R. W. & Parks, W. C. Role of matrix metalloproteinases in abdominal aortic aneurysms. Annals of the New York Academy of Sciences 800, 157-174 (1996).
    24 Kadoglou, N. P. & Liapis, C. D. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Current medical research and opinion 20, 419-432, doi:10.1185/030079904125003143 (2004).
    25 Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature reviews. Cancer 2, 161-174, doi:10.1038/nrc745 (2002).
    26 Bozzuto, G., Ruggieri, P. & Molinari, A. Molecular aspects of tumor cell migration and invasion. Annali dell'Istituto superiore di sanita 46, 66-80, doi:10.4415/ANN_10_01_09 (2010).
    27 Iyer, R. P., Patterson, N. L., Fields, G. B. & Lindsey, M. L. The history of matrix metalloproteinases: milestones, myths, and misperceptions. American journal of physiology. Heart and circulatory physiology 303, H919-930, doi:10.1152/ajpheart.00577.2012 (2012).
    28 Bode, W., Gomis-Ruth, F. X. & Stockler, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS letters 331, 134-140 (1993).
    29 Gohlke, U. et al. The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS letters 378, 126-130 (1996).
    30 Stawowy, P. et al. Furin-like proprotein convertases are central regulators of the membrane type matrix metalloproteinase-pro-matrix metalloproteinase-2 proteolytic cascade in atherosclerosis. Circulation 111, 2820-2827, doi:10.1161/CIRCULATIONAHA.104.502617 (2005).
    31 Nishimura, K. et al. Relationships between matrix metalloproteinases and tissue inhibitor of metalloproteinases in the wall of abdominal aortic aneurysms. International angiology : a journal of the International Union of Angiology 22, 229-238 (2003).
    32 McMillan, W. D. et al. Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation 96, 2228-2232 (1997).
    33 Petersen, E., Gineitis, A., Wagberg, F. & Angquist, K. A. Activity of matrix metalloproteinase-2 and -9 in abdominal aortic aneurysms. Relation to size and rupture. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 20, 457-461, doi:10.1053/ejvs.2000.1211 (2000).
    34 Freestone, T. et al. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arteriosclerosis, thrombosis, and vascular biology 15, 1145-1151 (1995).
    35 Crowther, M., Goodall, S., Jones, J. L., Bell, P. R. & Thompson, M. M. Increased matrix metalloproteinase 2 expression in vascular smooth muscle cells cultured from abdominal aortic aneurysms. Journal of vascular surgery 32, 575-583, doi:10.1067/mva.2000.108010 (2000).
    36 Curci, J. A., Liao, S., Huffman, M. D., Shapiro, S. D. & Thompson, R. W. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. The Journal of clinical investigation 102, 1900-1910, doi:10.1172/JCI2182 (1998).
    37 Wilson, W. R. et al. Elevated plasma MMP1 and MMP9 are associated with abdominal aortic aneurysm rupture. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 35, 580-584, doi:10.1016/j.ejvs.2007.12.004 (2008).
    38 Wiernicki, I. et al. Enhanced matrix-degrading proteolytic activity within the thin thrombus-covered wall of human abdominal aortic aneurysms. Atherosclerosis 212, 161-165, doi:10.1016/j.atherosclerosis.2010.04.033 (2010).
    39 Mao, D., Lee, J. K., VanVickle, S. J. & Thompson, R. W. Expression of collagenase-3 (MMP-13) in human abdominal aortic aneurysms and vascular smooth muscle cells in culture. Biochemical and biophysical research communications 261, 904-910, doi:10.1006/bbrc.1999.1142 (1999).
    40 Xiong, W. et al. Membrane-type 1 matrix metalloproteinase regulates macrophage-dependent elastolytic activity and aneurysm formation in vivo. The Journal of biological chemistry 284, 1765-1771, doi:10.1074/jbc.M806239200 (2009).
    41 Jackson, V. et al. Matrix metalloproteinase 14 and 19 expression is associated with thoracic aortic aneurysms. The Journal of thoracic and cardiovascular surgery 144, 459-466, doi:10.1016/j.jtcvs.2011.08.043 (2012).
    42 Nagase, H., Suzuki, K., Cawston, T. E. & Brew, K. Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). The Biochemical journal 325 ( Pt 1), 163-167 (1997).
    43 Bigg, H. F., Shi, Y. E., Liu, Y. E., Steffensen, B. & Overall, C. M. Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. The Journal of biological chemistry 272, 15496-15500 (1997).
    44 Basu, R. et al. Loss of Timp3 gene leads to abdominal aortic aneurysm formation in response to angiotensin II. The Journal of biological chemistry 287, 44083-44096, doi:10.1074/jbc.M112.425652 (2012).
    45 Ikonomidis, J. S. et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation 114, I365-370, doi:10.1161/CIRCULATIONAHA.105.000810 (2006).
    46 Eskandari, M. K. et al. Enhanced abdominal aortic aneurysm in TIMP-1-deficient mice. The Journal of surgical research 123, 289-293, doi:10.1016/j.jss.2004.07.247 (2005).
    47 Koskivirta, I. et al. Tissue inhibitor of metalloproteinases 4 (TIMP4) is involved in inflammatory processes of human cardiovascular pathology. Histochemistry and cell biology 126, 335-342, doi:10.1007/s00418-006-0163-8 (2006).
    48 Anidjar, S., Dobrin, P. B., Chejfec, G. & Michel, J. B. Experimental study of determinants of aneurysmal expansion of the abdominal aorta. Annals of vascular surgery 8, 127-136, doi:10.1007/BF02018860 (1994).
    49 Trollope, A., Moxon, J. V., Moran, C. S. & Golledge, J. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology 20, 114-123, doi:10.1016/j.carpath.2010.01.001 (2011).
    50 Tsui, J. C. Experimental models of abdominal aortic aneurysms. The open cardiovascular medicine journal 4, 221-230, doi:10.2174/1874192401004010221 (2010).
    51 Tanaka, A., Hasegawa, T., Chen, Z., Okita, Y. & Okada, K. A novel rat model of abdominal aortic aneurysm using a combination of intraluminal elastase infusion and extraluminal calcium chloride exposure. Journal of vascular surgery 50, 1423-1432, doi:10.1016/j.jvs.2009.08.062 (2009).
    52 Zaragoza, C. et al. Animal models of cardiovascular diseases. Journal of biomedicine & biotechnology 2011, 497841, doi:10.1155/2011/497841 (2011).
    53 Allaire, E., Guettier, C., Bruneval, P., Plissonnier, D. & Michel, J. B. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. Journal of vascular surgery 19, 446-456 (1994).
    54 Molacek, J. et al. Optimization of the model of abdominal aortic aneurysm--experiment in an animal model. Journal of vascular research 46, 1-5, doi:10.1159/000135659 (2009).
    55 Lin, P. Y. et al. Coarctation-induced degenerative abdominal aortic aneurysm in a porcine model. Journal of vascular surgery 57, 806-815 e801, doi:10.1016/j.jvs.2012.08.104 (2013).
    56 Davis, V. et al. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arteriosclerosis, thrombosis, and vascular biology 18, 1625-1633 (1998).
    57 Frederiks, W. M. & Mook, O. R. Metabolic mapping of proteinase activity with emphasis on in situ zymography of gelatinases: review and protocols. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 52, 711-722 (2004).
    58 Kowalewski, R., Sobolewski, K., Malkowski, A., Wolanska, M. & Gacko, M. Evaluation of enzymes involved in proteoglycan degradation in the wall of abdominal aortic aneurysms. Journal of vascular research 43, 95-100, doi:10.1159/000089790 (2006).
    59 Knox, J. B., Sukhova, G. K., Whittemore, A. D. & Libby, P. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95, 205-212 (1997).
    60 Liaw, N., Fox, J. M., Siddiqui, A. H., Meng, H. & Kolega, J. Endothelial nitric oxide synthase and superoxide mediate hemodynamic initiation of intracranial aneurysms. PloS one 9, e101721, doi:10.1371/journal.pone.0101721 (2014).
    61 Zhang, H. et al. Transforming growth factor-beta1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cells via ROS-dependent ERK-NF-kappaB pathways. Molecular and cellular biochemistry 375, 11-21, doi:10.1007/s11010-012-1512-7 (2013).
    62 Maddahi, A., Chen, Q. & Edvinsson, L. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat. BMC neuroscience 10, 56, doi:10.1186/1471-2202-10-56 (2009).
    63 Leeman, M. F., McKay, J. A. & Murray, G. I. Matrix metalloproteinase 13 activity is associated with poor prognosis in colorectal cancer. Journal of clinical pathology 55, 758-762 (2002).
    64 Miyamori, H., Takino, T., Seiki, M. & Sato, H. Human membrane type-2 matrix metalloproteinase is defective in cell-associated activation of progelatinase A. Biochemical and biophysical research communications 267, 796-800, doi:10.1006/bbrc.1999.2050 (2000).
    65 Lovejoy, B. et al. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375-377 (1994).
    66 Eliason, J. L. et al. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation 112, 232-240, doi:10.1161/CIRCULATIONAHA.104.517391 (2005).
    67 Rizas, K. D., Ippagunta, N. & Tilson, M. D., 3rd. Immune cells and molecular mediators in the pathogenesis of the abdominal aortic aneurysm. Cardiology in review 17, 201-210, doi:10.1097/CRD.0b013e3181b04698 (2009).
    68 Cohen, J. R. et al. Neutrophil chemotaxis and neutrophil elastase in the aortic wall in patients with abdominal aortic aneurysms. Journal of investigative surgery : the official journal of the Academy of Surgical Research 4, 423-430 (1991).
    69 Wayne, G. J. et al. TIMP-3 inhibition of ADAMTS-4 (Aggrecanase-1) is modulated by interactions between aggrecan and the C-terminal domain of ADAMTS-4. The Journal of biological chemistry 282, 20991-20998, doi:10.1074/jbc.M610721200 (2007).
    70 Geng, L. et al. Elevation of ADAM10, ADAM17, MMP-2 and MMP-9 expression with media degeneration features CaCl2-induced thoracic aortic aneurysm in a rat model. Experimental and molecular pathology 89, 72-81, doi:10.1016/j.yexmp.2010.05.006 (2010).
    71 Sadek, M. et al. Gene expression analysis of a porcine native abdominal aortic aneurysm model. Surgery 144, 252-258, doi:10.1016/j.surg.2008.04.007 (2008).
    72 Okamoto, T. et al. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. The Journal of biological chemistry 276, 29596-29602, doi:10.1074/jbc.M102417200 (2001).
    73 Bannikov, G. A., Karelina, T. V., Collier, I. E., Marmer, B. L. & Goldberg, G. I. Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. The Journal of biological chemistry 277, 16022-16027, doi:10.1074/jbc.M110931200 (2002).
    74 Springman, E. B., Angleton, E. L., Birkedal-Hansen, H. & Van Wart, H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proceedings of the National Academy of Sciences of the United States of America 87, 364-368 (1990).
    75 Birkedal-Hansen, H. & Taylor, R. E. Detergent-activation of latent collagenase and resolution of its component molecules. Biochemical and biophysical research communications 107, 1173-1178 (1982).
    76 Kumar, V. & Sharma, A. Neutrophils: Cinderella of innate immune system. International immunopharmacology 10, 1325-1334, doi:10.1016/j.intimp.2010.08.012 (2010).
    77 Kurihara, T. et al. Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection. Circulation 126, 3070-3080, doi:10.1161/CIRCULATIONAHA.112.097097 (2012).
    78 Longo, G. M. et al. MMP-12 has a role in abdominal aortic aneurysms in mice. Surgery 137, 457-462, doi:10.1016/j.surg.2004.12.004 (2005).
    79 Wang, L. et al. Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection. Journal of vascular surgery 56, 1698-1709, 1709 e1691, doi:10.1016/j.jvs.2012.05.084 (2012).
    80 Apte, S. S., Olsen, B. R. & Murphy, G. The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. The Journal of biological chemistry 270, 14313-14318 (1995).

    下載圖示 校內:2016-10-31公開
    校外:2016-10-31公開
    QR CODE