簡易檢索 / 詳目顯示

研究生: 謝永達
Sie, Yong Da
論文名稱: 多光子雷射直寫與時域聚焦光場系統之開發
Development of Multiphoton Laser Direct Writing and Temporal Focusing Light-Field System
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 159
中文關鍵詞: 多光子激發元件製作直寫向量掃描三維細胞外基質結構多光子時域聚焦光場顯微術電腦視覺
外文關鍵詞: multi-photon excitation component fabrication, directing writing vector scan, three-dimensional extracellular matrix structure, multi-photon temporal focusing, light-field microscope, computer vision
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以開發多光子激發(multiphoton excitation, MPE)加工與高速三維(three-dimensional, 3D)顯微術系統,以及生醫應用為主,其研究主題大致可分為兩大議題,首先以實驗室所建構之雷射加工直寫(laser direct writing)以及多光子蛋白質交聯(multiphoton protein crosslinking)作用來製作出各式之細胞外基質(extracellular matrix, ECM)之3D微結構,以提供利基(niche)微環境給細胞作3D之生長與爬行,由實驗結果驗證了可透過此系統來應用在建構3D ECM微結構來引導細胞生長,並控制細胞生長之區域在特定3D空間中。
    在第二部分主要以建構高速3D顯微多光子影像系統為主,其研究發展階段可大致可分為三部分: 1) 改良傳統之廣視域時域聚焦(temporal focusing, TF)技術,以數位微面鏡裝置(digital micromirror device, DMD)取代傳統閃耀式光柵(blazed grating),建構廣視域影像激發之TF系統,此新系統為基於DMD之TF系統,並同時兼具數位光調變器(digital light processor, DLP)之結構光照明功能; 2) 在影像接收端部分,以發展可高速擷取動態影像之光場(light field, LF)技術為主,透過單一微透鏡陣列(microlens array, MLA)將各方向之入射光之方向以及位置資訊分別記錄在影像感測器上之不同部位,可透過四維度之矩陣來描述一束光束之行進狀態,並透過傅立葉切片(Fourier slice)技術來重建各個焦平面之影像,透過電腦視覺技術(computer vision)之整合,來將各焦平面影像原始資訊進行計算以重建出三維表面形貌; 3) 整合上述之多光子DMD廣視域TF技術之光學激發技術與LF系統作為高速影像接收顯微系統,並透過調變其傅立葉共軛焦平面上之數值孔徑大小,可控制其3D體積激發在特定空間中,來減少背景之雜訊,並同時可進行動態影像之觀察,在影像收光方面,由於LF只需以單一幀即可記錄下整個三維光學資訊,接著透過3D反褶積(deconvolution)運算即可數位重建出三維之螢光影像,實驗結果以高速布朗運動來進行最終測試與驗證。
    最後,透過上述兩大系統主題之開發,可應用於探討生醫微環境在細胞或組織層級交互作用之研究,並可提供一高通量之檢測平台來觀察其生物行為,另外其高速體積影像之優勢亦有潛力應用於神經訊號影像方面之研究。

    In this dissertation, the multiphoton excitation (MPE) system, high-speed three-dimensional (3D) microscopy system have been investigated and developed, and applied on the biomedical research. The research topics of this dissertation can be divided into two major issues. First of all, the lab-made laser processing direct writing technique and multiphoton protein crosslinking mechanism are used to fabricate various extracellular matrixes (ECM) micro-scaffolds. The 3D micro-structure provides a 3D growth and migration of cells in the niche microenvironments. From the experimental results, it is verified that the 3D ECM microstructure can be constructed through this system to guide cell growth, and control the growth region of cell in a specific 3D spatial distribution.
    In the second part, the main purpose is focused on constructing the high-speed 3D microscopic multiphoton imaging systems. The research and development stage can be broadly divided into three parts: 1) Improvement of the conventional wide-field temporal focusing (TF) technology. A digital micromirror device (DMD) is used to replace the conventional blazed grating, and constructs a TF system for the wide-field image excitation. This new system is the DMD-based TF system, and at the same time, it also act as a digital light processor (DLP) with structured illumination ability; 2) In the image receiving terminal, the light field (LF) technology, that can capture dynamic images at high speed. Through a single microlens array (MLA), the direction and position of incident light can be separated and recorded on the image sensor. The four-dimensional matrix can be used to describe the state of travelling light. Fourier slice theorem is used to reconstruct the images at each focal plane. With the integration of computer vision, each focal plane image can be digitally-refocused. The raw data can be used to calculate and reconstruct the 3D surface morphology; 3) Integrate the MPE technology and LF system of the multi-photon DMD wide-field TF technology as a high-speed image receiving microscopy system. Furthermore, the 3D volume excitation can be controlled by adjusting the numerical aperture in the Fourier conjugate focal plane, and reduce the noise of the background at the same time. The LF can record the entire 3D information in a single frame, and then digitally reconstruct the three-dimensional fluorescence image via 3D deconvolution algorithm. The system is examined and verified by the high-speed Brownian motion experiment.
    Finally, through the development of the above two major topic, that can be applied to explore the interaction of the biomedical microenvironments at the cell or tissue level, and provide a high-throughput detection platform to observe the biological behavior via the high-speed volumetric imaging. Moreover, the advantages and the potential of these techniques can be applied to the study of neuronal signal imaging.

    摘要 I Abstract III Acknowledgement V Table of Content VII List of Figures XII List of Table XV Abbreviation XVI Chapter 1 Introduction 1 1.1 Three-dimensional microfabrication for the niche of bio-scaffolds 1 1.2 Multiphoton excited photochemistry for biological protein 4 1.3 DMD based temporal focusing for structure illumination 7 1.4 Motivation and objective 11 1.5 Guidance 14 References 16 Chapter 2 Laser Direct Writing for 3D Multi-Protein Microstructures 27 2.1 Three-dimensional bio-scaffold fabrication 27 2.2 Materials and methods 31 2.2.1 Sample preparation 31 2.2.2 Femtosecond laser direct writing system 32 2.2.3 Design-transformation, vector scanning, and repetition positioning 34 2.2.4 Cell migration and cell-matrix interaction analysis 36 2.3 Experimental results and discussions 37 2.3.1 Cell migration and adhesion on 2D multi-component biopolymer island-bridge structure 37 2.3.2 3D complex multi-protein microstructures 38 2.3.3 3D BSA/FN microstructures 41 2.3.4 Cell migration and cell-matrix interaction analysis 43 2.4 Conclusion 46 References 46 Chapter 3 Bioimaging via Temporal Focusing Multiphoton Excitation Microscopy with Binary Digital-micromirror-device Holography 53 3.1 Temporal focusing-based microscopy via digital-micromirror-device 53 3.2 Optical setup and principle 57 3.2.1 Temporal focusing-based MPE microscope via a DMD 57 3.2.2 Temporal focusing multiphoton excitation microscope with DMD 59 3.2.3 Axial excitation confinement 60 3.2.4 TFMPEM with binary DMD holography 63 3.3 Experimental results and discussions 65 3.3.1 Axial confinement and polarization property of DMD-based temporal focusing 65 3.3.2 Structured illumination of DMD-based temporal focusing 67 3.3.3 Axial confinement enhancement via binary DMD holography 68 3.3.4 Complementary patterned illumination via pulse width modulation 73 3.3.5 Bioimaging for COS-7 cell 75 3.4 Conclusion 76 References 77 Chapter 4 Light-Field Microscopy for 3D Surface Morphology Imaging of Opaque Microstructures 82 4.1 Light-field microscopy for surface morphology reconstruction 83 4.2 Experimental methods 87 4.2.1 Optical and mechanical design of static LF image experiments 87 4.2.2 Integration of 4D Fourier slicing and MRF propagation with defocus and correspondence algorithm 90 4.2.3 3D surface morphology estimation and calibration 94 4.2.4 3D micro scaffold preparation 95 4.2.5 Reconstructed positioning of Brownian motion 96 4.3 Experimental results and discussions 96 4.3.1 LF system characterization and alignment 96 4.3.2 3D surface morphology reconstruction 103 4.3.3 Natural irregular and dynamic 3D morphology observation 108 4.4 Conclusion 112 References 115 Chapter 5 Volumetric Bioimaging via Temporal Focusing-Based Light Field Microscope 120 5.1 Temporal focusing-based light field microscope 121 5.2 System setup and principle 125 5.2.1 Overall TF-LFMPEM configurations 125 5.2.2 Wave optics and LF 3D-deconvolution RL algorithm 128 5.3 Experimental results and discussions 131 5.3.1 Volume-projection and axial confinement 131 5.3.2 System verification and Gaussian blur filter 133 5.3.3 LF 3D-deconvolution human skin in situ images 136 5.3.4 3D Brownian motion of 100 Hz volumetric rate 138 5.4 Conclusion 141 References 142 Chapter 6 Summary and Future Directions 151 6.1 Summary 151 6.2 Future directions 152 References 153 Curriculum Vitae 155

    [1.1] S. J. Morrison and J. Kimble, “Asymmetric and symmetric stem-cell divisions in development and cancer,” Nature 441(7097), 1068–1074 (2006).
    [1.2] B. M. Gillette, J. A. Jensen, B. Tang, G. J. Yang, A. B. Lari, M. Zhong, and S. K. Sia, “In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices,” Nat. Mater. 7(8), 636–640 (2008).
    [1.3] M. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nat. Biotechnol. 23(1), 47–55 (2005).
    [1.4] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M. M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, and R. Pasqualini, “Three-dimensional tissue culture based on magnetic cell levitation,” Nat. Nanotechnol. 5(4), 291–296 (2010).
    [1.5] S. Kobel and M. P Lutolf, “High-throughput methods to define complex stem cell niches,” Biotechniques 48(4), ix–xxii (2010).
    [1.6] F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freyman, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
    [1.7] F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freyman, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater. 22(8), 868–871 (2010).
    [1.8] D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35(10), 1602–1604 (2010).
    [1.9] Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, N.-S. Chang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “High-throughput fabrication of gray-level biomicrostructures via temporal focusing excitation and laser pulse control,” J. Biomed. Opt. 18(17), 075004 (2013).
    [1.10] Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of free form polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
    [1.11] S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
    [1.12] W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
    [1.13] P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
    [1.14] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
    [1.15] X. Chen, Y.-D. Su, V. Ajeti, S.-J. Chen, and P. J. Campagnola, “Cell adhesion on micro-structured fibronectin gradients fabricated by multiphoton excited photochemistry,” Cell Mol. Bioeng. 5(3), 307–319 (2012).
    [1.16] V. Ajeti, C.-H. Lien, S.-J. Chen, P.-J. Su, J. M. Squirrell, K. H. Molinarolo, G. E. Lyons, K. W. Eliceiri, B. M. Ogle, and P. J. Campagnola, “Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning,” Opt. Express 21(21), 25346–25355 (2013).
    [1.17] J. Lu, W. Min, J.-A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
    [1.18] D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond laser in polymeric materials: microfabrication of doped structures and micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
    [1.19] M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nano-structuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [1.20] K. Terzaki, E. Kalloudi, E. Mossou, E. P Mitchell, V T. Forsyth, E. Rosseeva, P. Simon, M. Vamvakaki, M. Chatzinikolaidou, A. Mitraki, and M. Farsari, “Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward 'scaffold on scaffold' hard tissue engineering,” Biofabrication 5 (4), 1–14 (2013).
    [1.21] A. Ovsianikov, S. Mühleder, J. Torgersen, Z. Li, X.-H. Qin, S. V. Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, and J. Stampfl, “Laser photofabrication of cell-containing hydrogel constructs,” Langmuir 30 (13), 3787–3794 (2014).
    [1.22] J. Torgersen, A. Ovsianikov, V. Mironov, N.U Pucher, X.H. Qin, Z. Li, K. Cicha, T.Machacek, V. Jantsch-Plunger, R. Liska, J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in thepresence of whole organisms,” J. Biomed. Opt. 17 (10), 1–10 (2012).
    [1.23] S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21(14), 17028–17041 (2013).
    [1.24] S. Rekštyte, E. Kaziulionyte, E. Balciunas, D. Kaškelyte, and M. Malinauskas, “Direct laser fabrication of composite material 3D microstructured scaffolds,” J. Laser Micro. Nanoen. 9 (1), 25–30 (2014).
    [1.25] Göppert-Mayer, M. “Uber elementarakte mit zwei quantensprüngen,” Ann. Phys. 9, 273–294 (1931).
    [1.26] W. R Zipfel, R. M Williams, and W.W Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotechnology 21(11), 1369–1377 (2003).
    [1.27] L. Novotny, B. Hecht, Principles of Nano-Optics, 1st ed., (Cambridge 2006).
    [1.28] D.P. Craig, and T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation Molecule Interactions, 1st ed., (Academic Press Inc. Ltd 1984).
    [1.29] B. R. Masters, P. So, Handbook of Biomedical Nonlinear Optical Microscopy, 1st ed., (Oxford University Press, Inc. 2008).
    [1.30] S. Basu, C.W. Wolgemuth, and P. J. Campagnola, “Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multiphoton excited cross-linking,” Biomacromolecules 5(6), 2347–2357 (2004).
    [1.31] D. Balasubramanian, X. Du, and J. S. Zigler, “The reaction of singlet oxygen with proteins, with special reference to crystallins,” Photochemistry and photobiology 52(4), 761–768 (1990).
    [1.32] I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies (Springer, 2010).
    [1.33] A. Kaufman, “Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes,” ACM SIGGRAPH Comput. Graph. 21(4), 171–179 (1987).
    [1.34] J. T. L. Thong, K. W. Lee, and W. K. Wong, “Reduction of charging effects using vector scanning in the scanning electron microscope,” Scanning 23(6), 395–402 (2011).
    [1.35] G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
    [1.36] B. F Grewe, D. Langer, H. Kasper, B. M Kampa, and F. Helmchen,” High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–405 (2010).
    [1.37] H. Dana, and S. Shoham, “Remotely scanned multiphoton temporalfocusing by axial grism scanning,” Opt. Letters 37(14), 2913–2915 (2012).
    [1.38] J.-Y. Yu, C.-H. Kuo, D. B. Holland, Y. Chen, M. Ouyang G. A. Blake, R. Zadoyan, C.-L. Guo, “Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy,” J. Biomed. Opt. 16(11), 116009-1–116009-9 (2011).
    [1.39] D. Oron, E. Tal, and Y. Silberberg, “Scanning less depth-resolved microscopy,” Opt. Express 13(5), 1468–1475 (2005).
    [1.40] G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [1.41] A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” PNAS 105(51), 20221–20226 (2008).
    [1.42] E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [1.43] D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Letters 35(10), 1602–1604 (2010).
    [1.44] O. D. Therrien, B. Aubé, S. Pagès, P. De Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2(3), 696–704 (2011).
    [1.45] L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
    [1.46] D. Kim, Ultrafast Optical Pulse Manipulation in Three Dimensional- resolved Microscope Imaging and Microfabrication, PhD. dissertation, MIT (2009).
    [1.47] P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang. Schärer, and R. W Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7(7), 1410–1425 (2012).
    [1.48] D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010).
    [1.49] E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30(13), 1686–1688 (2005).
    [1.50] M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscope,” Opt. Commun. 281(7), 1796–1805 (2008).
    [1.51] A. Vaziriand and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
    [1.52] H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4(7), 995–1005 (2013).
    [1.53] L.-C. Cheng, C.-H. Lien, Y. D. Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. Xu, C. Y. Dong, and S.-J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5(8), 2526–2536 (2014).
    [1.54] L. I. Zon, “Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal,” Nature 453(15), 306–313 (2008).
    [1.55] D. J. Rossi, C. H.M. Jamieson, and I. L. Weissman, “Stems cells and the pathways to aging and cancer,” Cell 132(4), 681–696 (2008).
    [1.56] M. A Blasco, “Telomere length, stem cells and aging,” Nat. Chem. Biol. 3(10), 640–649 (2007).
    [1.57] J. V. Chakkalakal, K. M. Jones, M. A. Basson, and A. S. Brack, “The aged niche disrupts muscle stem cell quiescence,” Nature 490(7420), 355–360 ( 2012)
    [1.58] I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman, and T. A. Rando, “Rejuvenation of aged progenitor cells by exposure to a young systemic environment,” Nature 433(7027), 760–764 (2005).
    [1.59] J. M. Ruckh, J.-W. Zhao, J. L. Shadrach, P. v. Wijngaarden, T. N. Rao, A. J. Wagers, and R. J.M. Franklin, “Rejuvenation of regeneration in the aging central nervous system,” Cell Stem Cell 10(1), 96–103 (2012).
    [1.60] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M.-M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, and R. Pasqualini, “Three-dimensional tissue culture based on magnetic cell levitation,” Nature Nanotechnology 5, 291–296 (2010).
    [1.61] S. A. Bergfeld and Y. A. DeClerck, “Bone marrow-derived mesenchymal stem cells and the tumor microenvironment,” Cancer Metastasis Rev. 29(2), 249–261 (2010).
    [1.62] R. I.-Bartolome and J. S. Gutkind, “Keeping the epidermal stem cell niche in shape,” Cell Stem Cell 7(2), 143–145 (2010).
    [1.63] J. Voog and D. L. Jones, “Stem cells and the niche: a dynamic duo,” Cell Stem Cell 6(2), 103–115 (2010).
    [1.64] S. C. Li, L. Wang, H. Jiang, J. Acevedo, A. C. Chang, and W. G. Loudon, “Stem cell engineering for treatment of heart diseases: potentials and challenges,” Cell Biol. Int. 33(3), 255–267 (2009).
    [1.65] T.-Y. Lu, B. Lin, J. Kim, M. Sullivan, K. Tobita, G. Salama, and L. Yang, “Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells,” Nat. Commun. 4(2307), 1–11 (2013).
    [1.66] N. Mohan, P. D. Nair, and Y. Tabata, “Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds,” J. Biomed. Mater Res A. 94(1), 146–159 (2010).
    [1.67] B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, “Guiding neuronal development with in situ microfabrication,” Proc Natl Acad. Sci. 101(46), 16104–16108 (2004).
    [1.68] J. L. Goldberg, “How does an axon grow,” Genes Dev. 17(8), 941–958 (2003).
    [1.69] S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E M Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 1–9 (2011).
    [1.70] J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31(21), 5536–5644 (2010).
    [2.1] S. J. Morrison and J. Kimble, “Asymmetric and symmetric stem-cell divisions in development and cancer,” Nature 441(7097), 1068–1074 (2006).
    [2.2] B. M. Gillette, J. A. Jensen, B. Tang, G. J. Yang, A. B. Lari, M. Zhong, and S. K. Sia, “In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices,” Nat. Mater. 7(8), 636–640 (2008).
    [2.3] M. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nat. Biotechnol. 23(1), 47–55 (2005).
    [2.4] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M. M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, and R. Pasqualini, “Three-dimensional tissue culture based on magnetic cell levitation,” Nat. Nanotechnol. 5(4), 291–296 (2010).
    [2.5] S. Kobel and M. P Lutolf, “High-throughput methods to define complex stem cell niches,” Biotechniques 48(4), ix–xxii (2010).
    [2.6] F. Klein, B. Richter, T. Striebel, C. M. Franz, G. von Freyman, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
    [2.7] F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freyman, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater. 22(8), 868–871 (2010).
    [2.8] D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35(10), 1602–1604 (2010).
    [2.9] Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, N.-S. Chang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “High-throughput fabrication of gray-level biomicrostructures via temporal focusing excitation and laser pulse control,” J. Biomed. Opt. 18(17), 075004 (2013).
    [2.10] Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of free form polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
    [2.11] S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208–209, 153–158 (2003).
    [2.12] W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express 18(26), 27550–27559 (2010).
    [2.13] P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33(5), 1511–1513 (2000).
    [2.14] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33(5), 1514–1523 (2000).
    [2.15] X. Chen, Y.-D. Su, V. Ajeti, S.-J. Chen, and P. J. Campagnola, “Cell adhesion on micro-structured fibronectin gradients fabricated by multiphoton excited photochemistry,” Cell Mol. Bioeng. 5(3), 307–319 (2012).
    [2.16] V. Ajeti, C.-H. Lien, S.-J. Chen, P.-J. Su, J. M. Squirrell, K. H. Molinarolo, G. E. Lyons, K. W. Eliceiri, B. M. Ogle, and P. J. Campagnola, “Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning,” Opt. Express 21(21), 25346–25355 (2013).
    [2.17] J. Lu, W. Min, J.-A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
    [2.18] D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond laser in polymeric materials: microfabrication of doped structures and micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
    [2.19] M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nano-structuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [2.20] K. Terzaki, E. Kalloudi, E. Mossou, E. P Mitchell, V T. Forsyth, E. Rosseeva, P. Simon, M. Vamvakaki, M. Chatzinikolaidou, A. Mitraki, and M. Farsari, “Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward 'scaffold on scaffold' hard tissue engineering,” Biofabrication 5(4), 1-14 (2013).
    [2.21] A. Ovsianikov, S. Mühleder, J. Torgersen, Z. Li, X.-H. Qin, S. V. Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, and J. Stampfl, “Laser photofabrication of cell-containing hydrogel constructs,” Langmuir 30(13), 3787–3794 (2014).
    [2.22] J. Torgersen, A. Ovsianikov, V. Mironov, N.U Pucher, X.H. Qin, Z. Li, K. Cicha, T.Machacek, V. Jantsch-Plunger, R. Liska, J. Stampfl, “Photo-sensitive hydrogels for three-dimensional laser microfabrication in thepresence of whole organisms,” J. Biomed. Opt. 17(10), 1-10 (2012).
    [2.23] S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds,” Opt. Express 21(14), 17028-17041 (2013).
    [2.24] S. Rekštyte, E. Kaziulionyte, E. Balciunas, D. Kaškelyte, and M. Malinauskas, “Direct laser fabrication of composite material 3D microstructured scaffolds,” J. Laser Micro. Nanoen. 9(1), 25-30 (2014).
    [2.25] I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies (Springer, 2010).
    [2.26] J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47-66 (1986).
    [2.27] A. Kaufman, “Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes,” ACM SIGGRAPH Comput. Graph. 21(4), 171–179 (1987).
    [2.28] J. T. L. Thong, K. W. Lee, and W. K. Wong, “Reduction of charging effects using vector scanning in the scanning electron microscope,” Scanning 23(6), 395–402 (2011).
    [2.29] S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. A 71(2), 359–68 (2004).
    [2.30] N. I. Smith, K. Fujita, O. Nakamura, and S. Kawata, “Three-dimensional subsurface microprocessing of collagen by ultrashort laser pulses,” Appl. Phys. Lett. 78(7), 999–1001 (2001).
    [2.31] D.-X. Wang, D.-M. Guo, Z.-Y. Jia, and H.-W. Leng, “Slicing of CAD models in color STL format,” Comput. Ind. 57(1), 3–10 (2006).
    [2.32] K.-C. Cho, C.-H. Lien, C.-Y. Lin, C.-Y. Chang, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures,” Opt. Express 19(12), 11732–11739 (2011).
    [2.33] S. H. Mousavi and P. Hersey, “Role of caspases and reactive oxygen species in rose Bengal-induced toxicity in melanoma cells,” Iran J. Basic Med. Sci. 10(2), 118–123 (2007).
    [2.34] S. B. Koevary, “Selective toxicity of rose Bengal to ovarian cancer cells in vitro,” Int. J. Physiol. Pathophysiol. Pharmacol. 4(2), 99–107 (2012).
    [3.1] G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9, 201-208 (2012).
    [3.2] B. F Grewe, D. Langer, H. Kasper, B. M Kampa, and F. Helmchen,” High-speed in vivo calcium imaging reveals neuronalnetwork activity with near-millisecond precision,” Nat. Methods 7, 399-405 (2010).
    [3.3] H. Dana, and S. Shoham, “Remotely scanned multiphoton temporalfocusing by axial grism scanning,” Opt. Letters 37, 2913-2915 (2012).
    [3.4] J.-Y. Yu, C.-H. Kuo, D. B. Holland, Y. Chen, M. Ouyang G. A. Blake, R. Zadoyan, C.-L. Guo, “Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy,” J. Biomed. Opt. 16, 116009-1- 116009-9 (2011).
    [3.5] D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468 (2005).
    [3.6] G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153 (2005).
    [3.7] A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” PNAS 105, 20221 (2008).
    [3.8] 8. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7, 848 (2010).
    [3.9] D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Letters 35, 1602 (2010).
    [3.10] O. D. Therrien, B. Aubé, S. Pagès, P. De Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2, 696 (2011).
    [3.11] L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20, 8939 (2012).
    [3.12] P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang. Schärer, and R. W Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protocols 7, 1410 (2012).
    [3.13] D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18, 18086 (2010).
    [3.14] Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20, 19030 (2012).
    [3.15] E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30(13), 1686–1688 (2005).
    [3.16] M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscope,” Opt. Commun. 281(7), 1796–1805 (2008).
    [3.17] A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
    [3.18] H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4(7), 995–1005 (2013).
    [3.19] L.-C. Cheng, C.-H. Lien, Y. D. Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. X., C. Y. Dong, and S.-J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5(8), 2526–2536 (2014).
    [3.20] T. Kreis, P. Aswendt, and R. Ho¨fling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926 (2001).
    [3.21] D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14 (2003).
    [3.22] P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, “High-speed phase modulation using the RPC method with a digital micromirror-array device,” Opt. Express 14, 5588 (2006).
    [3.23] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).
    [3.24] S.-Y. Wu, J. Liang, and M. F. Becker, “Suppression of the zero-order diffraction beam from computer-generated holograms produced by a DLP® spatial light modulator,” Proc. SPIE 8254, 82540C (2012).
    [3.25] M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
    [3.26] E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express 17(7), 5391–5401 (2009).
    [3.27] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
    [3.28] D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819 (2008).
    [3.29] M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J Microsc. 198, 82 (2000).
    [4.1] Ferraro, P., Wax, A. & Zalevsky, Z. Coherent Light Microscopy: Imaging and Quantitative Phase Analysis. (Springer, 2011).
    [4.2] Giddings, J. C. A system based on split-flow lateral-transport thin (SPLITT) for rapid and continuous particle fractionation. Sep. Sci. Technol. 20, 749–768 (1985).
    [4.3] Vlahovska, P. M., Podgorski, T. & Misbah, C. Vesicles and red blood cells in flow: From individual dynamics to rheology. C. R. Physique 10, 775–789 (2009).
    [4.4] Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C. & Podgorski, T. Hydrodynamic lift of vesicles under shear flow in microgravity. Europhys. Lett. 83, 24002 (2008).
    [4.5] Vitkova, V., Mader, M.-A., Polack, B., Misbah, C. & Podgorski, T. Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys. J. 95, L33-L35 (2008).
    [4.6] Danker, G., Biben, T., Podgorski, T., Verdier, C. & Misbah, C. Dynamics and rheology of a dilute suspension of vesicles: higher order theory. Phys. Rev. 76, 041905 (2007).
    [4.7] Mader, M.-A., Vitkova, V., Abkarian, M., Viallat, A. & Podgorski, T. Dynamics of viscous vesicles in shear flow. Eur. Phys. J. E 19, 389–397 (2006).
    [4.8] Bolles, R. C., Baker, H. H. & Marimont, D. H. Epipolar-plane image analysis: An approach to determining structure from motion. Int. J. of Computer Vision 1, 7-55 (1987).
    [4.9] Levoy, M. & Hanrahan, P. Light field rendering. Proc. ACM SIGGRAPH, ACM Press, 31–42 (1996).
    [4.10] Gortler, S. J., Grzeszczuk, R., Szeliski, R. & Cohen, M. The lumigraph. Proc. ACM SIGGRAPH, ACM Press, 43–54 (1996).
    [4.11] Levoy, M. Light fields and computational imaging. Computer 39, 46-55 (2006).
    [4.12] Levoy, M., Zhang, Z. & McDowall, I. Recording and controlling the 4D light field in a microscope. J. of Microscopy 235, 144–162 (2009).
    [4.13] Levoy, M., Ng, R., Adams, A., Footer, M. & Horowitz, M. Light field microscopy. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 924–934 (2006).
    [4.14] Ng, R., Levoy, M., Br´edif, M., Duval, G., Horowitz, M. & Hanrahan, P. Light field photography with a hand-held plenoptic camera. Stanford Tech Report CTSR 2005-02, 1-11 (2005).
    [4.15] Ng, R. Digital Light Field Photography. (Ph.D. dissertation, Stanford University, 2006).
    [4.16] Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A. & Tumblin, J. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM SIGGRAPH 26, 1-12 (2007).
    [4.17] Sarder, P. & Nehorai, A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Processing Magazine 23, 32-45 (2006).
    [4.18] Zanella, R., Zanghirati, G., Cavicchioli, R., Zanni, L., Boccacci, P., Bertero, M. & Vicidomini, G. Towards real-time image deconvolution: application to confocal and STED microscopy. Sci. Rep. 3, 1-8 (2013).
    [4.19] Bertero, M., Boccacci, P., Desider`a, G. & Vicidomini, G. Image deblurring with Poisson data: from cells to galaxies. Inverse Problems 25, 1-26 (2009).
    [4.20] Broxton, M., Grosenick, L., Yang, S., Cohen, N., Andalman, A., Deisseroth, K. & Levoy, M. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express 21, 25418-25439 (2013).
    [4.21] Prevedel, R., Yoon, Y.-G., Hoffmann, M., Pak, N., Wetzstein, G., Kato, S., Schrödel, T., Raskar, R., Zimmer, M., Boyden, E. S. & Vaziri, A. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727-730 (2014).
    [4.22] Perez, C. C., Lauri, A., Symvoulidis, P., Cappetta, M., Erdmann, A. & Westmeyer, G. G. Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera. J. Biomed Opt. 20, 096009-1-096009-6 (2015).
    [4.23] Cohen, N., Yang, S., Andalman, A., Broxton, M., Grosenick, L., Deisseroth, K., Horowitz, M. & Levoy, M. Enhancing the performance of the light field microscope using wavefront coding. Opt. Express 22, 24817-24839 (2014).
    [4.24] Schedl, D. C. & Bimber, O. Volumetric Light-Field Excitation. Sci. Rep. 6, 29193 (2016).
    [4.25] Li, S. Z. Markov Random Field Modeling in Image Analysis, (Springer London, 2009).
    [4.26] Tao, M., Hadap, S., Malik, J. & Ramamoorthi, R. Depth from Combining Defocus and Correspondence Using Light-Field Cameras. In Proc. of International Conference on Computer Vision (ICCV), (2013).
    [4.27] Janoch, A., Karayev, S., Jia, Y., Barron, J., Fritz, M., Saenko, K. & Darrell, T. A catergory-level 3D object dataset: putting the kinect to work. In Consumer Depth Cameras for Computer Vision (ICCV), 141-165 (2013).
    [4.28] Fu, W., Yan, F., Chen, K. & Ren, Z. Scene distance measurement method based on light field imaging. Appl. Opt. 54, 6237-6243 (2015).
    [4.29] Crane, H. D. & Clark, M. R. Three-dimensional visual stimulus deflector. Appl. Opt. 17, 706-714 (1987).
    [4.30] Sie, Y. D., Li, Y.-C., Chang, N.-S., Campagnola, P. J. & Chen, S.-J. Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement. Biomed. Opt. Express 6, 480-490 (2015).
    [4.31] Ng, R. Fourier slice photography. Proc. ACM SIGGRAPH, ACM Press, 735-744 (2005).
    [4.32] Jakson, J. I., Meyer, C. H., Nishimura, D. G. & MACOVSKI, A. Selection of convolution function for Fourier inversion using gridding. IEEE Transactions on Medical Imaging 10, 473-478 (1991).
    [4.33] Gu, M. Advanced Optical Imaging Theory. (Springer, 2000).
    [5.1] B. R. Masters and P. T. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).
    [5.2] Y. D. Sie, Y.-C. Li, N.-S. Chang, P. J. Campagnola, and S.-J. Chen, “Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement,” Biomed. Opt. Express 6(2), 480–490 (2015).
    [5.3] M. H. Niemz, Laser-Tissue Interactions-Fundamentals and Applications, 3rd ed., (Springer, 2007).
    [5.4] F.-C. Li, Y. Liu, G.-T. Huang, L.-L. Chiou, J.-H. Liang, T.-L. Sun, C.-Y. Dong, and H.-S. Lee, ”In vivo dynamic metabolic imaging of obstructive cholestasis in mice,” Am. J. Physiol. Gastrointest Liver Physiol. 296(5), G1091–G1097 (2009).
    [5.5] J. R. Cooper, F. E. Bloom, and R. H. Roth, The Biochemical Basis of Neuropharmacology, 8th edition, (Oxford University Press).
    [5.6] 6. W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
    [5.7] B. F Grewe, D. Langer, H. Kasper, B. M Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods 7(5), 399–450 (2010).
    [5.8] G. Katona1, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
    [5.9] P. T. C. So, E. Y. Yew, and C. Rowlands, “High-throughput nonlinear optical microscopy,” Biophys. J. 105(12), 2641–2654 (2013).
    [5.10] W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
    [5.11] B. F. Grewe, F. F. Voigt, M. v. Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2036–2046 (2011).
    [5.12] J. Jiang, D. Zhang, S. Walker, C. Gu, Y. Ke, W. H. Yung, S.-C. Chen, “Fast 3-D temporal focusing microscopy using an electrically tunable lens,” Opt. Express 23(19), 24362–24368 (2015).
    [5.13] K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer., S. Fantini, and P. T. C. So, “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express 15(18), 11658–11678 (2007).
    [5.14] A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
    [5.15] M. B Ahrens, M. B Orger, D. N Robson, J. M Li, and P. J Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods 10(5), 413–420 (2013).
    [5.16] F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 201010–201026 (2013).
    [5.17] B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer 3rd, Z. Liu, B. P. English, Y. M.-Kiyosue, D. P. Romero, A. T. Ritter, J. L.-Schwartz, L. F.-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2015).
    [5.18] X. Chen, C. Zhang, P. Lin, K.-C. Huang, J. Liang, J. Tian, and J.-X. Cheng, “Volumetric chemical imaging by stimulated Raman projection microscopy and tomography,” Nat. Commun. 8(15117), 1–12 (2017).
    [5.19] J.-Y. Yu, C.-H. Kuo, D. B. Holland, Y. Chen, M. Ouyang, G. A. Blake, R. Zadoyan, C.-L. Guo, “Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy,” J. Biomed. Opt. 16(11), 116009 (2011).
    [5.20] O. Hernandez, E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani, “Three-dimensional spatiotemporal focusing of holographic patterns,” Nat. Commun. 7(11928), 1–10 (2016).
    [5.21] J.-N. Yih, Y. Y. Hu, Y. D. Sie, L.-C. Cheng, C.-H. Lien, and S.-J. Chen, “Temporal focusing-based multiphoton excitation microscopy via digital micromirror device,” Opt. Lett. 39(11), 3134–3137 (2014).
    [5.22] D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [5.23] G. Zhu, J. v. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 213–2159 (2005).
    [5.24] A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U S A. 105(51), 20221–20226 (2008).
    [5.25] M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
    [5.26] K. Kimura, S. Hasegawa, and Y. Hayasaki, “Diffractive spatiotemporal lens with wavelength dispersion compensation,” Opt. Lett. 35(2), 139–141 (2010).
    [5.27] A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18(19), 19645–19655 (2010).
    [5.28] E. Papagiakoumou, F. Anselmi1, A. Bègue, V. d. Sars, J. Glückstad, E. Y Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [5.29] L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
    [5.30] L.-C. Cheng, C.-H. Lien, Y. D. Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. Xu, C. Y. Dong, and S.-J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5(8), 2526–2536 (2014).
    [5.31] C. J Rowlands, D. Park, O. T Bruns, K. D Piatkevich, D. Fukumura, R. K Jain, M. G Bawendi, E. S Boyden, and P. T. C. So, “Wide-field three-photon excitation in biological samples,” Light-Sci. Appl. 6, 1–9 (2016).
    [5.32] K. Toda, K. Isobe, K. Namiki, H. Kawano, A. Miyawaki, and K. Midorikawa, “Temporal focusing microscopy using three-photon excitation fluorescence with a 92-fs Yb-fiber chirped pulse amplifier,” Biomed. Opt. Express 8(6), 2796–2806 (2017).
    [5.33] C.-Y. Chang, C.-H. Lin, C.-Y. Lin, Y.-D. Sie, Y.Y. Hu, S.-F. Tsai, and S.-J. Chen,” Temporal focusing-based widefield multiphoton microscopy with spatially modulated illumination for biotissue imaging,” J. Biophotonics, 1–10 (2017).
    [5.34] C.-H. Lien, G. Abrigo, P.-H. Chen, and F.-C. Chien, “Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation,” J. Biomed. Opt. 22(2), 026008 (2017).
    [5.35] E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30(13), 1686–1688 (2005).
    [5.36] A.Straub, M. E. Durst, and C. Xu, “High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup,” Biomed. Opt. Express 2(1), 80–88 (2011).
    [5.37] H. Dana and S. Shoham, “Remotely scanned multiphoton temporal focusing by axial grism scanning,” Opt. Lett. 37(14), 2913–2915 (2012).
    [5.38] M. Levoy and P. Hanrahan, “Light field rendering,” Proc. ACM Siggraph, ACM Press, 31–42 (1996).
    [5.39] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph,” Proc. ACM Siggraph, ACM Press, 43–54 (1996).
    [5.40] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [5.41] M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46-55 (2006).
    [5.42] M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope,” J. Microsc. 235(2), 144–162 (2009).
    [5.43] R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24, 735–744 (2005).
    [5.44] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, Light field photography with a hand-held plenoptic camera Computer Science Tech. Rep. (Stanford University, 2005).
    [5.45] R. Ng, “Digital light field photography,” Ph.D. dissertation (Stanford University, 2006).
    [5.46] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
    [5.47] C. C. Perez, A. Lauri, P. Symvoulidis, M. Cappetta, A. Erdmann, G. G. Westmeyer, “Calcium neuroimaging in behaving zebrafish larvae using a turn-key light field camera,” J. Biomed. Opt. 20(9), 026008 (2015).
    [5.48] M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
    [5.49] C. J. R. Sheppard, “Validity of the Debye approximation,” Opt. Lett. 25(22), 1660–1662 (2000).
    [5.50] M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [5.51] N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
    [5.52] 52. R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
    [5.53] H. Li1, C. Guo, I. Muniraj, B. C. Schroeder, J. T. Sheridan, and S. Jia, “Volumetric light-field encryption at the microscopic scale,” Sci. Rep. 7, 40113 (2017).
    [5.54] V. Levi, Q.Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys J. 88(4), 2919–2928 (2005).
    [5.55] R. M. Mazo, e.d., Brownian Motion: Fluctuations, Dynamics, and Applications (Oxford University Press, 2009).
    [5.56] P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23(3), 32–45 (2006).
    [5.57] M Bertero, P Boccacci, G Desiderà, and G Vicidomini, “Image deblurring with Poisson data: from cells to galaxies,” Inverse Probl. 25(12), 1–27 (2009).
    [5.58] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed., (Springer London, 2009).
    [5.59] R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, “Towards real-time image deconvolution: application to confocal and STED microscopy,” Sci. Rep. 3, 2523 (2013).
    [6.1] Cohen, N., Yang, S., Andalman, A., Broxton, M., Grosenick, L., Deisseroth, K., Horowitz, M. & Levoy, M. Enhancing the performance of the light field microscope using wavefront coding. Opt. Express 22, 24817-24839 (2014).
    [6.2] P.-Y. Hsiao, C.-L. Tsai, M.-C. Chen, Y.-Y. Lin, S.-D. Yang, and A.-S. Chiang, “Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin,” Biomed. Opt. Express 6(11), 4344–4352 (2015).

    下載圖示 校內:2021-01-30公開
    校外:2021-11-15公開
    QR CODE