簡易檢索 / 詳目顯示

研究生: 謝亞庭
Hsieh, Ya-Ting
論文名稱: 腦指蛋白 (Znf179)結合早幼粒細胞白血病鋅指蛋白 (PLZF),並在蛋白質層面調控其基因表現
Znf179 interacts with PLZF and regulates PLZF gene expression at protein level
指導教授: 李宜釗
Lee, Yi-Chao
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊研究所
Institute of Bioinformatics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 腦指蛋白早幼粒細胞白血病鋅指蛋白酵母雙雜合系統
外文關鍵詞: Znf179, Promyelocytic Leukemia Zinc-Finger (PLZF), Yeast two-hybrid
相關次數: 點閱:238下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦指蛋白 (Brain Finger Protein, BFP),又名為Znf179,屬於環指蛋白 (RING finger) 家族成員之一。Znf179基因會伴隨著胚胎腦部發育過程而表現,顯示在腦部發育及維持腦部功能其可能扮演重要的角色。在實驗室先前的研究發現,P19細胞分化成神經細胞的過程中,Znf179基因表現會隨著神經細胞的分化逐漸增加,而在P19細胞進行分化的過程中抑制Znf179的表現會明顯影響到P19細胞的神經分化,顯示Znf179基因的確在神經細胞分化的過程扮演重要的角色,但到目前為止對於Znf179在細胞中的分子作用機制仍不清楚,因此我的研究主要是藉由酵母菌雙雜合系統 (Yeast two-hybrid),試著從老鼠腦部基因庫中找出可能與Znf179基因有結合作用的蛋白質,希望藉此推測出Znf179基因在細胞內可能的分子作用機制。我們在酵母菌雙雜合系統實驗中發現,Znf179基因會與早幼粒細胞白血病鋅指蛋白 (Promyelocytic leukemia Zinc-Finger, PLZF) 結合,我們也進一步利用免疫沉澱法 (Immunoprecipitation) 證明兩個蛋白間的確有交互作用,並且PLZF蛋白質可能是透過C端鋅指功能區的前兩個鋅指與Znf179產生結合。從免疫螢光染色 (Immunofluorescence) 結果我們也發現,當PLZF與Znf179同時存在的情況下,PLZF會改變Znf179在細胞中分佈的位置,以上的實驗結果都顯示在細胞中這兩個蛋白質確實會互相結合。已知PLZF是個轉錄抑制因子,會吸引調控轉錄作用的協同抑制因子 (transcriptional co-repressor),例如:N-COR、SMART、Histone deacetylase (HDAC),形成複合體,達到抑制基因的轉錄作用。為了探討Znf179基因是否影響PLZF的轉錄調控能力,我們共同轉殖Flag-PLZF及EGFP-Znf179或控制組質體,結果我們意外地發現,在Znf179存在的情況下PLZF的蛋白質表現量有明顯增加的現象,但在RNA的層面則沒有明顯的影響,因此在未來的研究上會繼續探討Znf179對於PLZF在蛋白質的轉譯及穩定性上的調控機制。

    Znf179 is a member of the RING finger protein family. During embryogenesis, Znf179 is restrictedly expressed in brain region, suggesting a potential role in neuronal development. Previous studies in our laboratory have demonstrated that the expression of Znf179 is remarkably increased in the retinoic acid-induced neuronal differentiated P19 cells and Znf179 knock-down significantly attenuates neuronal differentiation. To investigate the molecular mechanisms of Znf179 function, we performed yeast two-hybrid screen to identify the Znf179 interacting proteins. In the experiments, promyelocytic leukemia zinc-finger (PLZF) was identified as a novel Znf179 interacting protein. The results of immunoprecipitation assay also confirmed the interaction between PLZF and Znf179 in vivio. Furthermore, we have demonstrated that PLZF interacts with Znf179 via its two zinc-finger domains, which is located between amino acids 398 and 455. Using immunofluorescence analysis, we observed that the cellular localization of Znf179 was changed by co-expressing PLZF. Taken together, these results indicate that the two proteins dose indeed interact with each other in vivo. PLZF has been found to regulate transcription through recruitment of nuclear receptor corepressors (N-CoR or SMRT) / histone deacetylase (HDAC) complexes via its POZ domain. To investigate whethere Znf179 affects transcriptional regulation ability of PLZF, COS-1 cells were co-transfected with HA-PLZF and EGFP-Znf179 or control plasmid. Unexpectedly, we found that exogenously expressing Znf179 caused a 5-fold increase in HA-PLZF protein abundance but not at Flag-PLZF RNA level. Further studies will be performed to examine the molecular mechanisms of Znf179 functions on PLZF protein regulation.

    中文摘要 ------------------------------------------- I 英文摘要 ------------------------------------------- III 誌謝 ----------------------------------------------- V 目錄 ----------------------------------------------- VI 圖附錄 --------------------------------------------- VII 附錄目錄 ------------------------------------------- VIII 第一章 緒論 ----------------------------------------- 1 第二章 實驗材料與方法 ------------------------------- 10 第三章 實驗結果 ------------------------------------- 40 第四章 討論 ----------------------------------------- 52 第五章 參考文獻 ------------------------------------- 59 附圖 ------------------------------------------------ 65 附錄 ------------------------------------------------ 76 自述 ------------------------------------------------ 82

    1. Inoue S, Orimo A, Saito T, Ikeda K, Sakata K, Hosoi T, Orimo H, Ouchi Y, Muramatsu M. A novel RING finger protein, BFP, predominantly expressed in the brain. Biochem Biophys Res Commun 1997 Nov 7; 240(1):8-14.
    2. Saurin AJ, Borden KL, Boddy MN, Freemont PS. Does this have a familiar RING? Trends Biochem Sci 1996 Jun; 21(6):208-14.
    3. Borden, K.L. & Freemont, P.S. The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 1996 Jun; 6(3):395-401.
    4. Deshaies, R. J., Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009; 78:399-434.
    5. Orimo A, Inoue S, Ikeda K, Sato M, Kato A, Tominaga N, Suzuki M, Noda T, Watanabe M, Muramatsu M. Molecular cloning, localization, and developmental expression of mouse brain finger protein (Bfp)/ZNF179: distribution of bfp mRNA partially coincides with the affected areas of Smith-Magenis syndrome. Genomics 1998 Nov 15; 54(1):59-69.
    6. Seki, N., Hattori, A., Muramatsu, M. & Saito, T. cDNA cloning of a human brain finger protein, BFP/ZNF179, a member of the RING finger protein family. DNA Res 1999 Oct 29; 6(5):353-6.
    7. Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ. Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 2007 Aug 22; 27(34):9201-19.
    8. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 1989 Jul 20; 340(6230):245-6.
    9. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 1993 Mar; 12(3):1161-7.
    10. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991 Aug 23; 66(4):675-84.
    11. Kakizuka, A., et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991 Aug 23; 66(4):663-74.
    12. Grimwade, D. & Lo Coco, F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 2002 Oct; 16(10):1959-73.
    13. He, L.Z., et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998 Feb; 18(2):126-35.
    14. Avantaggiato, V., et al. Developmental analysis of murine Promyelocyte Leukemia Zinc Finger (PLZF) gene expression: implications for the neuromeric model of the forebrain organization. J Neurosci 1995 Jul; 15(7 Pt 1):4927-42.
    15. Ahmad, K.F., Engel, C.K. & Prive, G.G. Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci U S A 1998 Oct 13; 95(21):12123-8.
    16. Albagli, O., Dhordain, P., Deweindt, C., Lecocq, G. & Leprince, D. The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ 1995 Sep; 6(9):1193-8.
    17. Kelly, K.F., Otchere, A.A., Graham, M. & Daniel, J.M. Nuclear import of the BTB/POZ transcriptional regulator Kaiso. J Cell Sci 2004 Dec 1; 117(Pt 25):6143-52.
    18. Kelly, K.F. & Daniel, J.M. POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol 2006 Nov; 16(11):578-87.
    19. David, G., et al. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998 May 14; 16(19):2549-56.
    20. Wong, C.W. & Privalsky, M.L. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 1998 Oct 16; 273(42):27695-702.
    21. Melnick, A., et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol 2002 Mar; 22(6):1804-18.
    22. Reid A, Gould A, Brand N, Cook M, Strutt P, Li J, Licht J, Waxman S, Krumlauf R, Zelent A. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood. 1995 Dec 15; 86(12):4544-52.
    23. Barna, M. Hawe, N. Niswander, L.Pandolfi, P. P.. Plzf regulates limb and axial skeletal patterning. Nature Genetics 2000 Jun;25(2):166-72.
    24. Costoya, J. A.Hobbs, R. M.Barna, M.Cattoretti, G.Manova, K.Sukhwani, M. Orwig, K. E. Wolgemuth, D. J.Pandolfi, P. P. Essential role of Plzf in maintenance of spermatogonial stem cells. Nature Genetics 2004 Jun; 36(6):653-9.
    25. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE. Plzf is required in adult male germ cells for stem cell self-renewal.Nat Genet. 2004 Jun;36(6):647-52.
    26. Legube, G. Trouche, D. Regulating histone acetyltransferases and deacetylases. EMBO reports 2003 Oct; 4(10):944-7.
    27. de Ruijter, A. J.van Gennip, A. H.Caron, H. N.Kemp, S.van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003 Mar 15; 370(Pt 3):737-49.
    28. Johnstone, R. W. Histone-deacetylase inhibitors : novel drugs for the treatment of cancer. Nat. Rev. Drug Discovery 2002 Apr;1(4):287-99.
    29. Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA 1999 Apr 27; 96(9):4868-73.
    30. Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK and RosenfeldMG. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997 May 1; 387(6628):43-8.
    31. Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P,Lorain S, Le Villain JP, Troalen F, Trouche D and Harel-Bellan A. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 1998 Feb 5;391(6667):601-5.
    32.David G, Alland L, Hong SH, Wong CW, Depinho RA and Dejean A. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998 May 14; 16(19):2549-56.
    33. MelnickA, Carlile G, Ahmad KF, Kiang CL, Corcoran C, Bardwell V, Prive GG and Licht JD. Mol. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Cell. Biol 2002 Mar;22(6):1804-18.
    34. Guenther, M. G., Lane, W. S., Fischle, W., Verdin, E., Lazar, M. A., and Shiekhattar, R. Genes Dev. 14, 1048–1057 (2000)
    35. Li, J., Wang, J., Wang, J., Nawaz, Z., Liu, J. M., Qin, J., and Wong, J. EMBO J. 19, 4342–4350 (2000)
    36. Wen, Y. D., Perissi, V., Staszewski, L. M., Yang, W. M., Krones, A., Glass, C. K., Rosenfeld, M. G., and Seto, E. Proc. Natl. Acad. Sci. U. S. A. 97, 7202–7207(2000)
    37. Bertos, N. R., Wang, A. H. and Yang, X. J. Class II histone deacetylases : structure, function, and regulation. Biochem. Cell Biol. 2001; 79(3):243-52.
    38. Kao, H. Y., Downes, M., Ordentlich, P. and Evans, R. M . Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000 Jan 1;14(1):55-66.
    39. Fischle, W., Dequiedt, F., Hendzel, M. J., Guenther, M. G., Lazar, M. A., Voelter, W.and Verdin, E. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 2002 Jan;9(1):45-57.
    40. Fischle, W., Dequiedt, F., Fillion, M., Hendzel, M. J., Voelter, W. and Verdin, E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J. Biol. Chem. 2001 Sep 21;276(38):35826-35.
    41. Yang, W. M., Tsai, S. C., Wen, Y. D., Fejer, G. and Seto, E. Functional domains of histone deacetylase-3. J. Biol. Chem. 2002 Mar 15;277(11):9447-54.
    42. Bertos, N. R., Wang, A. H. and Yang, X. J. Class II histone deacetylases : structure, function, and regulation. Biochem. Cell Biol. 2001;79(3):243-52.
    43. McKinsey, T. A., Zhang, C. L. and Olson, E. N. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 2001 Oct;11(5):497-504.
    44. McKinsey, T. A., Zhang, C. L. and Olson, E. N. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 2001 Oct;11(5):497-504.
    45. Marks, P., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T. and Kelly, W. K. Histone deacetylases and cancer : causes and therapies. Nat. Rev. Cancer 2001 Dec;1(3):194-202.
    46. Buggy, J. J., Sideris, M. L., Mak, P., Lorimer, D. D., McIntosh, B. and Clark, J. M. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem. J. 2000 Jul 28;478(1-2):77-83.
    47. Bertos, N. R., Wang, A. H. and Yang, X. J. Class II histone deacetylases : structure, function, and regulation. Biochem. Cell Biol. 2001;79(3):243-52.
    48. Yoshida, M., Furumai, R., Nishiyama, M., Komatsu, Y., Nishino, N. and Horinouchi, S. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother. Pharmacol. 2001 Aug;48 Suppl 1:S20-6.
    49. Bertos, N. R., Wang, A. H. and Yang, X. J. Class II histone deacetylases : structure, function, and regulation. Biochem. Cell Biol. 2001;79(3):243-52.
    50. Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M.,Wang, X. F. and Yao, T. P. HDAC6 is a microtubule-associated deacetylase. Nature 2002 May 23;417(6887):455-8.
    51. Saha, R. N. Pahan, K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2006 Apr;13(4):539-50.
    52. Gao, Y.K., Jiang, M., Yang, T. & Chen, J.Y. Analysis of the interaction between hPFTAIRE1 and PLZF in a yeast two-hybrid system. Acta Biochim Biophys Sin (Shanghai) 2006 Mar;38(3):164-70.
    53. Martin PJ, Delmotte MH, Formstecher P, Lefebvre P. PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nucl Recept. 2003 Sep 6;1(1):6.
    54. Thirkettle HJ, Mills IG, Whitaker HC, Neal DE. Nuclear LYRIC/AEG-1 interacts with PLZF and relieves PLZF-mediated repression. Oncogene. 2009 Oct 15;28(41):3663-70. Aug 3. 2009
    55. Chao TT, Chang CC, Shih HM. (2007). SUMO modification modulates the transrepression activity of PLZF. Biochem Biophys Res Commun 2007 Jun 29;358(2):475-82. Epub 2007 May 4.
    56. Koken, M.H., et al. Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci U S A 1997 Sep 16;94(19):10255-60.
    57. Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P. S. Structure, organization, anddynamics of promyelocytic leukaemia protein nuclear bodies. Am. J. Hum. Genet. 1998 Aug;63(2):297-304.
    58. LaMorte, V. J., Dyck, J. A., Ochs, R. L. & Evans, R. M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc. Natl Acad. Sci. USA 1998 Apr 28;95(9):4991-6.
    59. Alcalay, M. et al. The promyelocytic leukaemia gene product (PML) forms stable complexes with theretinoblastoma protein. Mol. Cell. Biol. 1998 Feb;18(2):1084-93.
    60. Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene 1999 Dec 23;18(56):7941-7.
    61. Zhong, S. et al. PML and Daxx participate in a novel nuclear pathway for apoptosis. J. Exp. Med. 2000 Feb 21;191(4):631-40.
    62. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impairs its ability to block nuclear export of MDM 2 and p53. Mol. Cell 1999 May;3(5):579-91.
    63. Zhong, S., Salomoni, P. & Pandolfi, P.P. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000 May;2(5):E85-90.
    64. Zhong, S., Muller, S., Freemont, P. S., Dejean, A. & Pandolfi, P. P. Role of SUMO-1 modified PML in nuclear body formation. Blood 2000 May 1;95(9):2748-52. 65.Müller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 1998 Jan 2;17(1):61-70.
    66.Chao TT, Chang CC, Shih HM. SUMO modification modulates the transrepression activity of PLZF. Biochem Biophys Res Commun. 2007 Jun 29;358(2):475-82.
    67. Kang SI, Chang WJ, Cho SG, Kim IY. Modification of promyelocytic leukemia zinc finger protein (PLZF) by SUMO-1 conjugation regulates its transcriptional repressor activity. J Biol Chem. 2003 Dec 19;278(51):51479-83.
    68. Miyazaki K, Ozaki T, Kato C, Hanamoto T, Fujita T, Irino S, Watanabe K, Nakagawa T, Nakagawara A. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun. 2003 Aug 15;308(1):106-13.
    69 Y. Haupt, R. Maya, A. Kazaz, M. Oren, Mdm2 promotes the rapid degradation of p53, Nature 1997 May 15;387(6630):296-9.
    70 M.H.G. Kubbutat, S.N. Jones, K.H. Vousden, Regulation of p53 stability by Mdm2, Nature 1997 May 15;387(6630):299-303.
    71. R. Honda, H. Tanaka, H. Yasuda, Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53, FEBS Lett. 1997 Dec 22;420(1):25-7.
    72. X. Zeng, L. Chen, C.A. Jost, R. Maya, D. Keller, X. Wang, W.G. Kaelin, M. Oren, J. Chen, H. Lu, MDM2 suppresses p73 function without promoting p73 degradation, Mol. Cell. Biol. 1999 May;19(5):3257-66.
    73. Darcy MJ, Calvin K, Cavnar K, Ouimet CC. Regional and Subcellular Distribution of HDAC4 in Mouse Brain. J Comp Neurol. 2010 Mar 1;518(5):722-40

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE