簡易檢索 / 詳目顯示

研究生: 蘇維宗
Su, Wei-Tsung
論文名稱: 在資源有限的普及網路中對於路由協定、網路安全、與服務自動化議題之研究
Researches on Routing, Security, and Service Automation in Resource-constrained Ubiquitous Networks
指導教授: 陳朝烈
Chen, Chao-Lieh
郭耀煌
Kuo, Yau-Hwang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 150
中文關鍵詞: 入侵偵測服務品質要求金鑰雜湊訊息認證碼入侵預防普及運算效益函數有類別限制之子圖同構問題多維度多選擇背包問題
外文關鍵詞: Intrusion detection, Intrusion prevention, Subgraph Isomorphism, Quality of Service (QoS), Utility function, Multi-dimension Multi-choice Knapsack Problem (M, Ubiquitous computing, Keyed-Hash Message Authentication Code (HMAC)
相關次數: 點閱:256下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 普及運算(ubiquitous computing)被視為下一代的電腦運算技術,其願景是讓使用者可以在任何時間、任何地點、透過任何裝置來存取運算環境。近年來,許多研究成果使得普及運算技術有長足的進步。然而,在資源有限的普及網路(ubiquitous networks)中仍然有一些尚待解決或改善的議題。本論文將針對資源有限的普及網路環境來探討三個重要的研究議題,包含路由協定、網路安全、與服務自動化。
    首先,我們處理在網路層上如何有效利用能源的議題。由於普及網路中有許多裝置(例如,感測節點與手持式裝置)是以電池供電,因此如何有效利用能源是一個相當重要的議題。在本論文中,所提出的能源比例式路由方法(Energy Proportional Routing,ERP)與封包長度調適方法(Packet Length Adaptation,PLA)可以有效地提升叢聚式無線網路的網路吞吐量與能源使用率。為了平衡負載,EPR 預測並控制所有節點的能源損耗以讓所有節點的能源使用率能夠趨於平均能源使用率。另外,PLA 可以根據雜訊所造成的封包錯誤率來設定最佳的封包長度以提升網路吞吐量與能源使用率。然而,隨著雜訊的增強就如同拉長傳輸距離一樣會造成更多的能源損耗。因此,為了能夠更準確的估算能源損耗,本論文也提出一個將通道雜訊轉換為傳送距離的模型使得在加入通道雜訊的情況下亦能夠有效地提升網路吞吐量與能源使用率。
    第二個要探討的議題是普及網路的安全性。由於個人資料可能會透過普及網路來傳送,因此驗證資料的來源與完整性是一項必要的工作。然而,傳統的安全性方法並無法直接套用在以降低能源損耗為重要議題的網路環境上。因此,本論文提出了適用於叢聚式無線網路的認證式入侵預防機制(Authentication-based Intrusion Prevention,AIP)與協同式入侵偵測機制(Collaboration-based Intrusion Detection,CID)。AIP 依據資料重要性、網路頻寬、金鑰雜湊訊息認證碼長度、與金鑰存活期等特性而採用安全性等級不同的認證機制以達到降低能源損耗的目的。然而,AIP 並無法避免被入侵的內部節點所發動的攻擊。因此,CID 藉由網路節點互相監控的方式來進行入侵偵測以在網路安全與能源損耗之間取得平衡。
    最後要探討的是考量服務品質要求與資源使用率的服務自動化議題。對使用者所要求的普及服務(ubiquitous services)而言,一組適合的裝置應該能夠自動地形成一個小型網路(piconet)以執行這些普及服務而不需要使用者的介入。為了達到此目的,首先我們分別提出了用來描述普及服務與普及網路的數學模型。另外,由於不同的服務型態與使用者對於服務品質的定義有很大的差異,因此多目的效益函數理論(Multiple Objective Utility Theory)被用來量化使用者對於服務品質的滿意度。本論文提出了兩個服務自動化演算法。對於移動式且大型普及網路而言,我們提出了基於解決有類別限制之子圖同構問題(Class Constrained Subgraph Isomorphism Problem)的分散式服務自動化演算法。另一方面,對於固定式且小型普及網路而言,我們則是提出了基於解決多維度多選擇背包問題(Multi-dimension Multi-choice Knapsack Problem)的集中式服務自動化演算法。透過實驗與模擬可以證明本論文所提出的兩個演算法可以在資源有限的普及網路中有效地配置網路資源並取得代表服務品質之系統效益值的近似最佳解。

    Ubiquitous computing (UbiCom) is the next-generation computing technology with the vision: user could access computing environments in an “any time, any where, any device” manner. In the latest decades, the researches on UbiCom have significantly improved to realize digital life. However, there are still several open issues in resource-constrained ubiquitous networks (UbiNet). In this dissertation, we will study three important issues in resource-constrained UbiNet, including routing protocol, network security, and service automation.
    First, this work tackles the energy-efficiency issue at the network layer. Energy conservation is truly critical in UbiCom since there are a lot of battery-powered devices (e.g., sensor node, handheld device) in UbiNet. In this dissertation, Energy Proportional Routing (EPR) and Packet Length Adaptation (PLA) are proposed to maximize the throughput and energy utilization in cluster-based wireless networks. To balance the load, EPR algorithm predicts and controls the energy consumption of each node as close as possible to the threshold representing the energy utilization mean value among clusters. In addition, PLA is derived and developed to optimize the throughput and energy utilization in wireless networks. However, more noise introduces more energy consumption since the noise is equivalently regarded as lengthening of transmission distances. Thus, a noise-referred distance model of wireless channels is also developed for more accurate estimation of the dissipated proportion in the residual energy so that further improvement of throughput and energy utilization is obtained.
    The second research issue is the network security. Since the personal information could be forwarded in UbiNet, verifying authenticity and integrity of delivered data is indispensable. Unfortunately, energy-efficiency is not considered in conventional security measures. In this dissertation, two energy-efficient security approaches are proposed. In Authentication-based Intrusion Prevention approach (AIP), distinct authentication mechanisms with different security levels are introduced to verify the data according to their relative importance so that the energy consumption is efficient reduced. However, the security threat from compromised sensor nodes cannot be fully avoided. Thus, Collaboration-based Intrusion Detection approach (CID) is then proposed. In CID, the nodes collaboratively monitor each other to balance the tradeoff between network security and energy efficiency.
    Finally, we study the issue of service automation with considering quality of service (QoS) and resource utilization. For each ubiquitous service (UbiServ), a set of adequate devices in UbiNet could be automatically organized to carry out this requested UbiServ without any user interaction. For this purpose, the Service Profile (SP) and Ubiquitous Network (UN) models are proposed to represent the UbiServ and the UbiNet, respectively. Moreover, the Multiple Objective Utility Theory (MUOT) is adopted to quantify the service quality which depends on the types of UbiServ and user-specified QoS needs. In this dissertation, two service automation algorithms are proposed. For mobile and large scale networks, the distributed service automation algorithm is proposed on the basis of solving Constrained Subgraph Isomorphism Problem (CC-SUBISO). On the other hand, for fixed and small scale networks, the centralized service automation algorithm is proposed on the basis of solving Multi-dimension Multi-choice Knapsack Problem (MMKP). The experiments and network simulations fully support that the proposed algorithms could maximize the service utility by efficiently allocating the network resources in resource-constrained UbiNet.

    中文摘要 I ABSTRACT III 致 謝 V ACKNOWLEDGEMENT VI CONTENTS 1 LIST OF TABLES 5 LIST OF FIGURES 7 CHAPTER 1. INTRODUCTION 9 1.1. BACKGROUND 10 1.1.1. Energy and Noise Models for Wireless Communications 10 1.1.2. Secure Communication for Wireless Sensor Network 12 1.1.2.1. Symmetric Key Management 14 1.1.2.2. Attacks against Cluster-based Sensor Networks 15 1.1.3. Ubiquitous Service Environments 16 1.1.3.1. Device Discovery 20 1.1.3.2. Device Composition 21 1.2. MOTIVATION AND CONTRIBUTION 22 1.2.1. Improving the Throughput and Energy Utilization for Noisy Wireless Networks 22 1.2.2. Balancing the Trade-off between Network Security and Energy Efficiency 23 1.2.3. Developing the Ubiquitous Service Automation Platform 24 1.3. ORGANIZATION OF THIS DISSERTATION 25 CHAPTER 2. NOISE-REFERRED ENERGY-PROPORTIONAL ROUTING WITH PACKET LENGTH ADAPTATION FOR CLUSTERED SENSOR NETWORKS 27 2.1. ENERGY PROPORTIONAL ROUTING 28 2.2. OPTIMAL PLA AND NOISE REFERRED DISTANCE 37 2.2.1. Throughput 37 2.2.2. Energy Utilization 38 2.2.3. Noise-referred Distance 39 2.3. ENERGY-PROPORTIONAL ROUTING WITH OPTIMAL PLA 40 2.4. MATHEMATICAL ANALYSIS OF ERP 42 2.5. EXPERIMENT AND SIMULATIONS 48 2.5.1. The Effects of Noise 48 2.5.2. Simulations of the Whole Sensor Network 49 2.5.3. EPR Routing with Noise-referred Distance 50 CHAPTER 3. ENERGY-EFFICIENT INTRUSION PROHIBITION SYSTEM FOR CLUSTER-BASED WIRELESS SENSOR NETWORKS 53 3.1. PROBLEM SETTING 54 3.2. AUTHENTICATION-BASED INTRUSION PREVENTION 55 3.2.1. Control Messages Verification in AIP 55 3.2.2. Sensed Data Verification in AIP 61 3.3. COLLABORATION-BASED INTRUSION DETECTION 65 3.3.1. Cluster Head Monitoring in CID 66 3.3.1.1. Determining the Alarm threshold and the Number of Monitor Nodes 67 3.3.1.2. Collaborative Monitoring Mechanism 71 3.3.1.3. Revoking Abnormal Cluster Heads 73 3.3.2. Member Node Monitoring in CID 75 3.4. SIMULATION RESULTS 76 CHAPTER 4. A QOS-DRIVEN APPROACH FOR SERVICE-ORIENTED DEVICE ANYCASTING IN UBIQUITOUS ENVIRONMENTS 83 4.1. PROBLEM STATEMENT OF SERVICE-ORIENTED DEVICE ANYCASTING PROBLEM (SDAP) 84 4.1.1. Representation Models 84 4.1.1.1. SP Representation Model 84 4.1.1.2. MANET Representation Model 85 4.1.2. SDAP Formulation 86 4.2. A QOS-DRIVEN APPROACH FOR SERVICE-ORIENTED DEVICE ANYCASTING 86 4.2.1. QoS-driven Utility Function 87 4.2.2. Description of Service-Oriented Device Anycasting (SDA) Approach 89 4.2.2.1. Service Development Phase (SDP) 90 4.2.2.2. Service Operation Phase (SOP) 93 4.2.2.3. Service Maintenance Phase (SMP) 97 4.3. ANALYSIS OF SDA 99 4.3.1. Time Complexity 100 4.3.2. Space Complexity 100 4.3.3. Number of Control Packets 101 4.4. SIMULATION RESULT 102 4.4.1. Simulation Scenario 102 4.4.1.1. Definitions of QoS Factors used in Simulations 103 4.4.1.2. Simulation Parameters 105 4.4.2. Simulation Results 106 CHAPTER 5. SODAS: SERVICE-ORIENTED DEVICE ARRANGEMENT SYSTEM IN RESOURCE-CONSTRAINED UBIQUITOUS ENVIRONMENTS 109 5.1. UBIQUITOUS SERVICE AND UBIQUITOUS NETWORK MODELING 110 5.1.1. Service Profile Modeling 110 5.1.2. Ubiquitous Network Modeling 110 5.1.3. Criteria of Capable Piconet 111 5.1.4. Quantification of Quality of Ubiquitous Services 112 5.1.5. Available Resource Formulation in Dynamic Environments 115 5.2. RDCP FORMULATION 117 5.3. SERVICE-ORIENTED DEVICE ARRANGEMENT SYSTEM (SODAS) 118 5.3.1. Service-Oriented Device Composer (SODC) 118 5.4. PERFORMANCE EVALUATION 121 5.4.1. Experimental Environment and Configuration 121 5.4.2. Experimental Results 121 5.4.2.1. Without Resource Competition 121 5.4.2.2. With Resource Competition 122 5.4.2.3. Insufficient Resource 122 CHAPTER 6. CONCLUSION AND FUTURE WORK 127 REFERENCES 131 APPENDIX A THE NP-COMPLETE PROOF OF SERVICE-ORIENTED DEVICE ANYCASTING PROBLEM (SDAP) 139 APPENDIX B THE PROOF OF THAT RESOURCE-CONSTRAINED DEVICE COMPOSITION PROBLEM (RDCP) AS A MMKP 141 自 述 145 VITA 147 PUBLICATION 149

    [Akb01] Akbar, C., Manning, E., Shoja, G. C., & Khan, S. (2001). Heuristic Solutions for
    Multiple-Choice Multi-Dimension Knapsack Problem. Int. Conf. on Computational
    Science, (pp. 112-117).
    [Aky02] Akyildiz, I. F., W., S., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless
    sensor networks: A survey. Computer Networks , 38 (4), pp. 393-422.
    [Ala05] Alam, S., Hasan, M., Hossain, M., & Sohail, A. (2005). Heuristic Solution of
    MMKP in Different Distributed Admission Control and QoS Adaptation Architectures for
    Video on Demand Service. 2nd Int. Conf. on Broadband Networks, 2, pp. 896-903.
    [Bae04] Baek, S. J., Veciana, G., & Su, X. (2004). Minimizing energy consumption in
    large-scale sensor networks through distributed data compression and hierarchical
    aggregation. IEEE Journal on Selected Area in Communications , 22 (6), pp. 1130-1140.
    [Bak81] Baker, D. J., & Ephremides, A. (1981). The Architecture Organization of a Mobile
    Radio Network via a Distributed Algorithm. IEEE Trans. Communication , 29 (11), pp.
    1694-1701.
    [Bas03] Basu, P. (May 2003). A task based approach for modeling distributed applications
    on mobile ad hoc networks. Boston, MA: Ph.D. thesis, Boston University.
    [Bas031] Basu, P., Ke, W., & Little, T. D. (2003). Dynamic Task-Based Anycasting in
    Mobile Ad Hoc Networks. Mobile Networks and Applications , 8 (5), pp. 593-612.
    [Bis95] Bischl, H., & Lutz, E. (1995). Packet error rate in the non-interleaved Rayleigh
    channel. IEEE Transactions on Communications , 43, pp. 1375-1382.
    [Boh05] Bohlen, M., Fabian, J., Pfeifer, D., & Rinker, J. T. (2005). Prototypes in pervasive
    computing. IEEE Pervasive Computing , 4 (4), 78-80.
    [Cha02] Chatterjee, M., Das, S. K., & Turgut, D. (Apr. 2002). WCA: A Weighted
    Clustering Algorithm for Mobile Ad Hoc Networks. J. Cluster Computing , 5 (2), pp.
    193–204.
    [Cha05] Chadha, A., Liu, Y., & Das, S. K. (2005). Group Key Distribution via Local
    Collaboration in Wireless Sensor Networks. Second IEEE Sensor and Ad Hoc
    Communications and Networks, (pp. 46-54). Santa Clara, USA.
    [Cha06] Chakraborty, D., Joshi, A., Yesha, Y., & Finin, T. (Feb. 2006). Toward Distributed
    service discovery in pervasive computing environments. IEEE Trans. Mobile Computing ,
    5 (2), pp. 97-122.
    [Che00] Chen, G., & Kotz, D. (Nov. 2000). A survey of context-aware mobile computing
    research. Dartmouth College, Dept. of Computer Science.
    [Che01] Chen, H., Joshi, A., & Finin, T. (2001). Dynamic Service Discovery for Mobile
    Computing: Intelligent Agents Meet Jini in the Aether. Cluster Computing , 4 (4), pp.
    343-354.
    [Che05] Chen, C.-L., & Lee, K.-R. (2005). An Energy-proportional Routing Algorithm for
    Lifetime Extension of Clustering-based Wireless Sensor Networks. Workshop on Wireless,
    Ad Hoc, and Sensor Networks.
    [Che06] Chen, C.-L., & Lee, K.-R. (2006). An Energy-proportional Routing Algorithm for
    Lifetime Extension of Clustering-based Wireless Sensor Networks. Journal of Pervasive
    Computing and Communications .
    [Cov91] Cover, T. M., & Thomas, J. A. (1991). Elements of Information Theory. John
    Wiley & Sons Inc.
    [CRO07] Crossbow Technology. (n.d.). Crossbow. Retrieved 2007, from
    http://www.xbow.com
    [DuW05] Du, W., Deng, J., Han, Y. S., Varshney, P., Katz, J., & Khalili, A. (2005). A
    Pairwise Key Pre-distribution Scheme for Wireless Sensor Networks. ACM Trans.
    Information and System Security , 8 (2), pp. 228-258.
    [DuW051] Du, W., Fang, L., & Ning, P. (2005). LAD: Localization Anomaly Detection for
    Wireless Sensor Networks. 19th IEEE International Parallel and Distributed Processing
    Symposium, (pp. 41a-41a). Denver, USA.
    [Edw06] Edwards, W. K. (2006). Discovery Systems in Ubiquitous Computing. IEEE
    Pervasive Computing , 5 (2), 70-77.
    [Esc02] Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed
    sensor networks. 9th ACM Conference on Computer and Communications Security, (pp.
    41–47). Washington DC, USA.
    [Fuj05] Fujii, K., & Suda, T. (Dec. 2005). Semantics-based dynamic service composition.
    IEEE Jul. on Selected Areas in Communications , 23 (12), pp. 2361-2372.
    [Ger95] Gerla, M., & Tsai, J. T. (1995). Multicluster, Mobile, Multimedia Radio Network.
    ACM Journal on Wireless Networks , 1 (3), pp. 255-265.
    [GIT08] Georgia Institute of Technology. (n.d.). Aware Home Research Initiative.
    Retrieved 2008, from http://www.cc.gatech.edu:80/fce/ahri/projects/index.html
    [Har05] Hartung, C., Balasalle, J., & Han, R. (2005). Node Compromise in Sensor
    Networks: The Need for Secure Systems. University of Colorado, Department of Computer
    Science.
    [Hei00] Heinzelman, W. B., Chandrakasan, A., & Balakrishnan, H. (2000). Energy
    Efficient Communication Protocol for Wireless Microsensor Networks. IEEE Hawaii Int.
    Conf. on System Science, (pp. 1-10). Hawaii, USA.
    [Hei02] Heinzelman, W. B., Chandrakasan, A., & Balakrishnan, H. (2002). An
    Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE
    Trans. Wireless Communication , 1 (4), pp. 660-670.
    [Hei03] Heile, R. F. (2003). IEEE Standard Part 15.3: Wireless Media Access Control
    (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area
    Networks (WPANs). IEEE.
    [Ily05] Ilyas, M., & Mahgoub, I. (2005). Handbook of Sensor Networks: Compact Wireless
    and Wired Sensing Systems. New York: CRC Press.
    [Jai02] Jain, M., & Dovrolis, C. (2002). End-to-end Available Bandwidth: Measurement
    Methodology, Dynamics, and Relation with TCP Throughput. ACM SIGCOMM.
    [Jon05] Jonghwa, C., Dongkyoo, S., & Dongil, S. (Feb. 2005). Research and
    implementation of the context-aware middleware for controlling home appliances. IEEE
    Trans. on Consumer Electronics , 51 (1), pp. 301-306.
    [Jos03] Joshi, A., Chakraborty, D., & Yesha, Y. (Mar. 2003). An Integrated Service
    Discovery and Routing Protocol for Ad Hoc Networks. University of Maryland, Baltimore,
    USA.
    [Joy00] Joy, B., & Edwards, W. K. (Jun. 2000). Core Jini. Prentice Hall.
    [Kar02] Karaoguz, L. (2002). High-rate wireless personal area networks. IEEE
    Communications , 39 (12), 96-102.
    [Kar03] Karlof, C., & Wanger, D. (2003). Secure routing in wireless sensor networks:
    attacks and countermeasures. First IEEE Int. Workshop on Sensor Network Protocols and
    Applications, (pp. 113-127). Alaska, USA.
    [Kar04] Karlof, C., Sastry, N., & Wagner, D. (2004). TinySec: a link layer security
    architecture for wireless sensor networks. ACM International Conference on Embedded
    Networked Sensor Systems, (pp. 162-175). Maryland, USA.
    [Kim06] Kim, J., Birykov, A., Preneel, B., & Hong, S. (2006). On the security of HMAC
    and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1. 5th Conference on
    Security and Cryptography for Networks, LNCS 4116,, (pp. 242–256).
    [Koz03] Kozat, U. C., & Tassiulas, L. (Mar. 2003). Network Layer Support for Service
    Discovery in Mobile Ad Hoc Networks. IEEE INFOCOM, 22 (1), pp. 1965-1975.
    [Lee03] Lee, C., Helal, A., Desai, N., Verma, V., & Arslan, B. (Nov. 2003). Konark: A
    System and Protocols for Device Independent, Peer-to-Peer Discovery and Delivery of
    Mobile Services. IEEE Trans. Sys., Man, and Cybernetics , 33 (6), pp. 682-696.
    [Lee05] Lee, R. C., Chang, R. C., Tseng, S. S., & Tsai, Y. T. (2005). Introduction to the
    Design and Analysis of Algorithms. McGraw-Hill Education.
    [Lee99] Lee, C., Lehoczky, J., Rajkumar, R., & Siewiorek, D. (1999). On Quality of
    Service Optimization With Discrete QoS Options. IEEE Real-Time Technology and
    Applications Symp.
    [Lin02] Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power Efficient GAthering
    in Sensor Information Systems. IEEE Aerospace Conf., (pp. 1-6). Montana, Canada.
    [Lin021] Lindsey, S., Raghavendra, C., & Sivalingam, K. M. (2002). Data Gathering
    Algorithms in Sensor Networks Using Energy Metrics. IEEE Transactions on Parallel and
    Distributed Systems , 13 (9), pp. 924-935.
    [Lin97] Lin, C. R., & Gerla, M. (1997). Adaptive Clustering for Mobile Wireless Networks.
    IEEE J. Select. Areas Communication , 15 (7), pp. 1265-1275.
    [Liu05] Liu, J., Zhao, F., & Petrovic, D. (2005). Information-directed routing in ad hoc
    sensor networks. IEEE Journal on Selected Areas in Communications , 23 (4), pp.
    851-861.
    [Man01] Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: A Routing Protocol for
    Enhanced Efficiency in Wireless Sensor Networks. 15th IEEE Parallel and Distributed
    Processing Symposium, (pp. 2009-2015). San Francisco, USA.
    [Man02] Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: A Hybrid Protocol for
    Efficient Routing and Comprehensive Information Retrieval in Wireless Sensor Networks.
    16th IEEE Parallel and Distributed Processing Symposium, (pp. 195-202). Florida, USA.
    [Min02] Mini, A. F., Nath, B., & Loureiro, A. A. (2002). A Probabilistic Approach to
    Predict the Energy Consumption in Wireless Sensor Networks. 4th Workshop de
    Comunicao sem Fio e Computao Mvel, (pp. 23-25).
    [MIT07] MIT. (n.d.). μAMPS Research. Retrieved 2007, from
    http://www-mtl.mit.edu/researchgroups/icsystems/uamps/research/cad.shtml
    [MIT08] MIT. (n.d.). Project Oxygen. Retrieved 2008, from
    http://oxygen.csail.mit.edu/index.html
    [MIT081] MIT. (n.d.). Project Aire. Retrieved 2008, from http://aire.csail.mit.edu:80/
    [Mur05] Muruganathan, S. D., MA, D. C., Bhasin, R. I., & Fapojuwo, A. O. (2005). A
    Centralized Energy-Efficient Routing Protocol for Wireless Sensor Networks. IEEE Radio
    Communications , 43 (3), S8–S13.
    [New04] Newsome, J., Shi, E., Song, D., & Perrig, A. (2004). The sybil attack in sensor
    networks: analysis & defenses. Third int. symposium on Information processing in sensor
    networks, (pp. 259-268). New York, USA.
    [Nov02] Novaes, M., Westerink, P., & Codella, C. (2002). Orthogonal layered multicast:
    improving the multicast transmission of multimedia streams at multiple data rates. Int.
    Conf. on Communications, 4, pp. 2563-2567.
    [NS207] The University of Southern California's Information Sciences Institute. (n.d.). The
    Network Simulator - ns-2. Retrieved 2007, from http://www.isi.edu/nsnam/ns/
    [Ona05] Onat, I., & Miri, A. (2005). An Intrusion Detection System for Wireless Sensor
    Networks. IEEE International Conference on Wireless and Mobile Computing, Networking
    and Communications, (pp. 253-259). Montreal, Canada.
    [Pah01] Pahlavan, K., & Krishnamurthy, P. (2001). Principles of Wireless Networks: A
    Unified Approach. Prentice Hall.
    [Par05] Parra-Hernandez, R., & Dimopoulos, N. (2005). A New Heuristic for Solving the
    Multi-choice Multidimensional Knapsack Problem. IEEE Trans. on Sys., Man, and
    Cybernetics , 35 (5), pp. 708-717.
    [Per00] Perrig, A., Canetti, R., Tygar, J. D., & Song, D. (2000). Efficient authentication
    and signing of multicast streams over lossy channels. IEEE Symposium on Research in
    Security and Privacy, (pp. 56-73). Oakland, Canada.
    [Per01] Perrig, A., Szewczyk, R., Wen, V., Culler, D., & Tygar, J. D. (2001). SPINS:
    Security protocols for sensor networks. 7th Annual ACM Int. Conf. of Mobile Computing
    and Networks, (pp. 189-199). Rome, Italy.
    [Pra03] Prasad, R., Murray, M., Dovrolis, C., & Claffy, K. (2003, Nov./Dec.). Bandwidth
    estimation: metrics, measurement techniques, and tools. IEEE Network .
    [Pur93] Pursley, M. B., & Russell, H. B. (1993). Routing in Frequency-Hop Packet Radio
    Networks with Partial-Band Jamming. IEEE Trans. Communication , 41 (7), pp.
    1117-1124.
    [Rap96] Rappaport, T. (1996). Wireless Communications: Principle and Practice. New
    Jersey: Prentice Hall.
    [Reg95] Reggiannini, R. (1995). A lower performance bound for phase estimation over
    slowly-fading Ricean channels. IEEE Global Telecommunications Conference, 3, pp.
    2012-2016.
    [Ros98] Ross, S. (1998). A first Course in Probability. Prentice-Hall.
    [Rup97] Ruppe, R., Griswald, S., Walsh, P., & Martin, R. (1997). Near Term Digital Radio
    (NTDR) system. IEEE Military Communication Conf., (pp. 1282-1287). Monterey, USA.
    [She05] Shen, X., Zhuang, W., Jiang, H., & Cai, J. (2005). Medium access control in
    ultra-wideband wireless network,. IEEE Trans. Vehicular Technology , 54 (5), pp.
    1663-1677.
    [Shi04] Shi, E., & Perrig, A. (2004, Dec.). Designing Secure Sensor Networks. IEEE
    Wireless Communication , 28-43.
    [Siv06] Sivavakeesar, S., Gonzalez, O. F., & Pavlou, G. (Sep. 2006). Service Discovery
    Strategies in Ubiquitous Communication Environments. IEEE Communication , 44 (9),
    106-113.
    [STA08] Stanford University. (n.d.). Interactive Workspace Project. Retrieved 2008, from
    http://iwork.stanford.edu:80/
    [Sta99] Stallings, W. (1999). Cryptography and Network Security: Principles and Practice,
    second ed. New Jersey: Prentice Hall.
    [SuC05] Su, C. C., Chang, K. M., Horng, M. F., & Kuo, Y. H. (2005). The new Intrusion
    Prevention and Detection Approaches for Cluster-based Sensor Networks. IEEE Wireless
    Communication and Networking Conference, (pp. 1927-1932). New Orleans, USA.
    [SuC06] Su, C.-C., Lu, K.-S., Horng, M.-F., Chen, C.-L., Kuo, Y.-H., Hsu, J.-P., et al.
    (2006). Service-oriented Device Anycasting using Quality First Search in Wireless
    Personal Area Network. 2006 IFIP Int. Conf. on Embedded and Ubiquitous Computing,
    (pp. 620-629).
    [SuW05] Su, W., & Akyildiz, I. F. (2005). Time-diffusion synchronization protocol for
    wireless sensor networks. IEEE/ACM Trans. Networking , 13 (2), pp. 384-397.
    [SuW07] Su, W. T., Chang, K. M., & Kuo, Y. H. (Mar. 2007). eHIP: An energy-efficient
    hybrid intrusion prohibition system for cluster-based wireless sensor networks. Computer
    Networks Journal , 51 (4), pp. 1151-1168.
    [Tak05] Takahashi, H., Suganuma, T., & Shiratori, N. (Jul. 2005). AMUSE: an agent-based
    middleware for context-aware ubiquitous services. 11th IEEE Int. Conf. on Parallel and
    Distributed Systems, 1, pp. 743-749.
    [Ver99] Verzades, J., Guttman, E., Perkins, C., & Kaplan, S. (Jun. 1999). Service Location
    Protocol, Version 2. IETF RFC 2608.
    [Wan05] Wang, X., & Yu, H. (2005). How to break MD5 and other hash functions.
    Advances in Cryptology –EUROCRYPT 2005, LNCS 3494, (pp. 19–35).
    [Wan051] Wang, X., Yin, Y. L., & Yu, H. (2005). Finding collision in the full SHA-1.
    Advances in Cryptology –EUROCRYPT 2005, LNCS 3494, (pp. 1–18).
    [Wan052] Wang, X., Yin, J., & Agrawal, D. P. (2005). Effects of Contention Window and
    Packet Size on the Energy Efficiency of Wireless Local Area Network. IEEE Wireless
    Communications and Networking Conference, 1, pp. 94 – 99.
    [Wea02] Weatherall, J., & Jones, A. (2002). Ubiquitous Networks and Their Applications.
    IEEE Wireless Communication , 9 (1), 18-29.
    [Wei91] Weiser, M. (1991, Sept.). The Computer for the 21st Century. Scientific American ,
    94-104.
    [Wes01] West, D. B. (2001). Introduction to Graph Theory. Prentice Hall.
    [Woo02] Wood, A. D., & Stankovic, J. A. (2002). Denial of Service in Sensor Networks.
    IEEE Computer , 35 (10), 54-62.
    [WuE97] Wu, E., Tsai, J., & Gerla, M. (1997). The effect of radio propagation on
    multimedia, mobile, multihop networks: models and countermeasures. IEEE Singapore
    International Conference on Networks, (pp. 411-425).
    [WuY04] Wu, Y., Ma, D., Li, T., & Deng, R. H. (2004). Classify encrypted data in wireless
    sensor networks. 60th IEEE Vehicular Technology Conference, (pp. 3236-3239). Los
    Angeles, USA.
    [Xia05] Xiao, J., & Boutaba, R. (Dec. 2005). QoS-driven service composition and
    adaptation in autonomic communication. IEEE Jul. on Selected Areas in Communications ,
    23 (12), pp. 2344-2360.
    [Yan02] Yang, H., Meng, X., & Lu, S. (2002). Self-organized network-layer security in
    mobile Ad Hoc networks. Int. Conf. on Mobile Computing and Networking, (pp. 11-20).
    Atlanta, USA.
    [Yau03] Yau, S. S., & Karim, F. (Nov. 2003). An energy-efficient object discovery protocol
    for context-sensitive middleware for ubiquitous computing. IEEE Trans. on Parallel and
    Distributed Systems , 14 (11), pp. 1074-1085.
    [YeW04] Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with
    coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Networking ,
    12 (3), pp. 493-506.
    [You04] Younis, O., & Fahmy, S. (2004). Distributed Clustering in Ad-hoc Sensor
    Networks: A Hybrid, Energy-Efficient Approach. IEEE Transactions on Mobile
    Computing , 3 (4), pp. 366-379.
    [YuT05] Yu, T., & Lin, K. J. (Jul. 2005). Service Selection Algorithms for Web Services
    with End-to-end QoS Constraints. Journal of Information Systems and E-Business
    Management , 3 (2), pp. 103-126.
    [YuT07] Yu, T., Zhang, Y., & Lin, K.-J. (2007). Efficient Algorithms for Web Services
    Selection with End-to-end QoS Constraints. ACM Trans. on the Web , 1 (1), p. Article 6.
    [Zhu03] Zhu, S., Setia, S., & Jajodia, S. (2003). LEAP: efficient security mechanisms for
    large-scale distributed sensor networks. 10th ACM Conf. on Computer and Communication
    Security, (pp. 27-31). Washington DC, USA.

    下載圖示 校內:2010-08-11公開
    校外:2011-08-11公開
    QR CODE