| 研究生: |
徐志豪 Hsu, Chih-Hao |
|---|---|
| 論文名稱: |
應用統計製程管制圖於量測系統分析之量具校正議題-以自行車鏈條製程為例 Applying the Statistical Process Control Charts to Measurement System Analysis for Measurement tools Calibration - A Case of Production in Bicycle Chains |
| 指導教授: |
張裕清
Chang, Yu-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 管制圖 、量測系統分析 、重複性 、再現性 、貝氏分析 、機率分佈 |
| 外文關鍵詞: | control chart, MSA, GR&R, Bayesian Analysis, probability distribution |
| 相關次數: | 點閱:174 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一直以來工程師於製造過程分析時,透過統計製程管制(Statistical Process Control, SPC)進行監控,在量測結果分析前所得到的數據來源必須是可信的,隨著量測設備越來越精密的情況下,其設備之適用性及功能性亦成為企業選購時所參考之要件;本研究將以自行車鏈條製造廠之一量測機台為例,透過量測系統分析(Measurement System Analysis, MSA)與SPC之歷史資料帶入貝氏分析(Bayesian Analysis)方法,估算量測系統造成異常的機率,以有效達到確保量測品質之監控,係成為一值得探討之議題。首先,藉由SPC 及MSA 之歷史資料探討當SPC 發生異常通知時, ̅ 管制圖中製程發生異常平均數移動之變化量,以及量測設備異常所移動之變化量進而求得檢定力,接著使用貝氏分析方法列出製程出現異常後,對應量測機台機率分佈情況,並估算由量測系統所引起異常的機率,當某一機率分佈可能性相對較高時,則量測設備評估應進行校正作業;期望能盡早發現於量測設備校正週期期間,由量測系統所引起異常的機率。最後,量測系統應進行校正時,則以量測系統分析(Measurement System Analysis, MSA)中的穩定性、偏性、線性、重複性與再現性(Gauge Repeatability & Reproducibility, GRR)以及區別分類數(Number of Distinct Categories, NDC)以評估量測設備之適用性與其精密度,並進一步確定量測設備是否發生異常;期望提供相關人員一評估方法,以降低其異常所造成企業成本的損失。
SPC (statistical process control) has been the main monitoring platform for manufacturing industry during their control processes, therefore the data source
obtained must be very reliable before used for analysis. The applicability and functionality of measurement equipment have also become a key consideration when making a purchasing decision. Therefore, predicts the abnormal of
measurement equipment will be worth exploring and discussing. This research applies with measurement equipment in a bicycle chain manufacturing industry,
according to Bayesian analysis, we used the existing data of measurement system analysis (MSA) and SPC to forecast the risk of measurement abnormal in order to ensure the quality of manufacturing monitoring. First,we used the average of ̅control charts abnormal changed to investigate abnormal alarm of SPC combined with the abnormal change of measurement equipment to calculate the Power, next enumerated manufacturing process abnormal data with Bayesian analysis and distributed into each measurement equipment to calculate the abnormal frequency. Suggest doing a calibration when one of the measurement
equipment with higher abnormal frequency. The result of the calibration should work in accordance with MSA, including stability、bias、linearity、repeatability、
reproducibility and number of distinct categories to determine with suitable precision and accuracy. We provide a reference to aware of measurement abnormal which can help lower the cost.
台灣區車輛公業同業公會,2017,台灣車輛工業產值,from http://www.ttvma.org.tw/cht/industrial-survey.php
台灣基恩斯,2017,工廠自動化量測儀器,from http://www-search.keyence.com.tw/tw/zhtw/downloadcon/search.x?mode=ca&ie=utf8
台灣自行車輸出業同業公會,2017,統計數據,from http://www.tba-cycling.org/content.aspx?i=825
財團法人自行車暨健康科技研究發展中心,2015,自行車產業概況,產業學院 。
Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Cochran, J. J. (2014). Statistics for business & economics, revised. Cengage Learning.
Automotive Industry Action Group (AIAG), Measurement systems analysis (MSA) Reference Manual, 4th Edition, Chrysler, Ford, GM, 2010.
Barraentine, L. B. (1991). Concepts for R&R studies, Milwaukee, Wisconsin: ASQ Quality Press, ch. 1, 2-4.
Burdick, K. R., Borror, C. M., & Montgomery, D. C. (2005). Design and analysis of gauge R&R studies. ASA-SIAM Series on Statistics and Applied Probability, 17. SIAM: Philadelphia.
Burdick, R. K., Borror, C. M., & Montgomery, D. C. (2003). A review of methods for measurement systems capability analysis, Journal of Quality Technology, 35(4), 342-354.
Buonaccorsi, J. P., Dalen, I., Laake, P., Hjartåker, A., Engeset, D., & Thoresen, M. (2015). Sensitivity of regression calibration to non perfect validation data with application to the Norwegian Women and Cancer Study. Statistics in medicine, 34(8), 1389-1403
Buonaccorsi, J. P. (2010). Measurement error: models, methods, and applications. CRC Press.
Czarski, A., & Matusiewicz, P. (2012). Influence of measurement system quality on the evaluation of process capability indices. Metallurgy and Foundry Engineering, 38(1), 25-32.
Draper, N. R., & Smith, H. (2014). Applied regression analysis. John Wiley & Sons.
EN ISO 15189:2012 - Medical laboratories - Particular requirements for quality and competence.
García, A. C., & del Río, A. G. (2013). Number of distinct data categories and gage repeatability and reproducibility. A double (but single) requirement. Measurement, 46(8), 2514-2518.
He, S. G., Wang, G. A., & Cook, D. F. (2011). Multivariate measurement system analysis in multisite testing: An online technique using principal component analysis. Expert Systems with Applications, 38(12), 14602-14608.
ISO 3650:1998 - Geometrical product specifications (GPS) - length standards - gauge blocks, International Organization for Standardization.
ISO 9633:2007 - Cycle chains - Characteristics and test methods, International Organization for Standardization.
Joglekar, A. M. (2003). Statistical method for Six Sigma in R and D and Manufacturing. Canada: John Wiley and Sons, Inc.
Kadane, J. B., & Fischhoff, B. (2013). A cautionary note on global recalibration. Judgment and Decision Making, 8(1), 25.
Keogh, R. H., & White, I. R. (2014). A toolkit for measurement error correction, with a focus on nutritional epidemiology. Statistics in medicine, 33(12), 2137-2155.
Liu, S. I., & Liu, H. T. (2012). Cost-Benefit Analysis for the MIL-STD-1916: A Case Study. Management Science and Engineering, 6(1), 1-10.
Montgomery, D. C. (2013). Introduction to statistical quality control 7th. Jefferson: John Wiley & Sons, Inc..
Montgomery, D. C., & Runger, G. C. (2003). Gauge capability analysis and designed experiments. Part II: experimental design models and variance component estimation, Quality Engineering, 6(2), 289-305.
Pankratz, P. C. (1997). Calibration of an FTIR spectrometer for measuring carbon. Statistical Case Studies for Industrial Process Improvement, 1, 19.
Pyzdek, T. (2003). Quality engineering handbook, Marcel Dekker, Inc. Second Edition.
Ryan, T. P. (2000). Statistical methods for quality improvement, A Wiley-Interscience Publication, Second Edition.
Statistical process control (SPC), Reference Manual, Second Edition (2005). DaimlerChrysler Corporation, Ford Motor Company, and General Motors Corporation.
Tsai, P. (1989). Variable gauge repeatability and reproducibility study using the analysis of variance method, Quality Engineering, 1(1), 107-115.
Wengierow, M., Salbut, L., Ramotowski, Z., Szumski, R., & Szykiedans, K. (2013). Measurement system based on multi-wavelength interferometry for long gauge block calibration. Metrology and Measurement Systems, 20(3), 479-490.
Wheeler, D. J., & Lyday, R. W. (1989). Evaluating the measurement process, SPC Press, Knoxville, TN.
Zappa, D., & Deldossi, L. (2009). Misclassification rates, critical values and size of the design in measurement systems capability studies. Applied Stochastic Models in Business and Industry, 25(5), 601-611.
校內:2023-08-01公開