簡易檢索 / 詳目顯示

研究生: 楊道宏
Yang, Dao-Hong
論文名稱: 互補式金氧半電晶體之負偏壓溫度不穩定性與靜電放電研究
Investigation of Negative Bias Temperature Instability and Electrostatic Discharge in CMOSFETs
指導教授: 陳志方
Chen, Jone-Fang
李建興
Lee, Jian-Hsing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 140
中文關鍵詞: 負偏壓溫度不穩定性靜電放電傳輸線脈波動態電流分佈汲極設計
外文關鍵詞: Negative Bias Temperature Instability, Electrostatic Discharge, Transmission Line Pulse, Dynamic Current Distribution, Drain Engineering
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們主要研究P型金氧半場效電晶體之負偏壓溫度不穩定性可靠度分析以及閘極接地N型金氧半場效電晶體靜電防護元件之靜電放電現象。藉由直接基板電壓量測,我們探討閘極接地N型金氧半場效電晶體靜電防護元件在不同電流下的動態電流分佈。
    第二章探討先進製程之P型金氧半場效電晶體的負偏壓溫度不穩定性可靠度分析。我們證明出氧化層缺陷以及接面缺陷皆會導致P型金氧半場效電晶體之臨界電壓漂移,尤其是當尺寸縮小到奈米級。此外,核心元件的遷移率退化較輸出輸入元件為更嚴重。根據我們的汲極飽和電流退化模型,操作電壓對汲極飽和電流退化之影響可以被預測到。再者,藉由比較不同通道方向之超薄氧化層元件之可靠度,得知通道方向<100>之元件是個具有較高遷移率且能維持相同可靠度之元件。
    第三章裡,我們研究閘極接地N型金氧半場效電晶體靜電防護元件之基極電壓沿著通道傳輸之情形。這研究描述出如何耦合電壓到基板以及如何藉由基板做傳輸動作。藉由傳輸線的理論,此互相傳輸之行為能被闡釋。再者,我們研究在傳輸線脈波事件下元件之電流分佈情形。最後,自我一致效應,即在傳輸線脈波事件下整個元件之動態基極分佈情形,也被提出。
    第四章裡,我們研究閘極接地N型金氧半場效電晶體靜電防護元件在寄生雙極性電晶體開啟時所需之基極電壓。首先,最小能使得寄生雙極性電晶體開啟並且維持之基極電壓至少是0.9伏特,這值大於先前文獻所提到的值。再者,基極電壓會隨電流的增加而增加,這也不同於先前文獻所提出之基極電壓與電流無關的情形。最後,我們藉由模擬結果可以發現到導致在直流與脈波量測下基極電壓不一致之機制。
    第五章裡,我們探討不同的汲極設計對靜電防護表現之影響。由於反轉溫度隨摻雜濃度的增加而增加,所以一個有輕摻雜汲極區之N型金氧半場效電晶體將會有著兩種不同的反轉溫度。根據這個觀念,闡述製程結合佈局如何影響元件靜電放電表現之理論被首次提出。
    在最後的第六章裡,摘要幾個關鍵結果,並對此論文的未來方向做一建議。

    In this dissertation, we investigate the negative bias temperature instability (NBTI) of advanced PMOS transistors and the electrostatic discharge (ESD) phenomenon of the grounded gate NMOS (GGNMOS). By directly measuring the substrate potential, we explore the dynamic current distribution of GGNMOS devices under various levels of high current stress.
    NBTI of state-of-the-art PMOS transistors is investigated in Chapter 2. It is demonstrated that both oxide traps and interface traps can induce a significant shift in the threshold voltage of PMOSFETs, particularly as we continue to scale into the nanometer regime. Furthermore, we demonstrate that the mobility degradation of core devices is more serious than that of I/O devices. According to the Idsat degradation model, the impact of Vdd on Idsat degradation under a fixed amount of NBTI-induced damage is predicted. Moreover, through comparing the reliability of PMOSFETs with different channel orientations, it is shown that devices with <100> channel direction is a superior one with higher fresh mobility while maintaining the same degradation.
    In Chapter 3, the substrate potential propagation along the channel direction of GGNMOS devices is presented and investigated. The study presents how to couple the voltage to the P-substrate and how to propagate through the substrate. This mutual-propagation phenomenon can be explained by the transmission-line theorem. Furthermore, the time evolution of the current distribution for a device under a Transmission Line Pulse (TLP) stress event is discussed. Finally, the self-consistent effect, which illustrates the dynamic base region across the device under the TLP stress, is also addressed.
    In Chapter 4, the substrate potential needed to trigger a GGNMOS into the snapback region under TLP stress is investigated. Firstly, we show that the minimum substrate potential to turn on and sustain the parasitic n-p-n bipolar is at least 0.9 V, which is larger than the values previously published in literature. Secondly, we find the substrate potential increases with the drain current, which also differs from the previously reported independence of the substrate potential on the stress level. Lastly, the mechanism behind the substrate potential inconsistency between DC and pulse measurement is explained in detail through simulation results.
    In Chapter 5, the influence of drain engineering on the device ESD performance is studied. Since the turnover temperature (TOT) increases with the doping concentration, an NMOSFET will inherit two different TOTs. Based on this, a new theory combining the process flow and layout is derived to explain how the two factors affect the device ESD performance.
    In Chapter 6, we summarize key findings and suggest the direction of future work for this study.

    Chinese Abstract i English Abstract iii Acknowledgment vi Contents vii Table Captions x Figure Captions xi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.1.1 Negative Bias Temperature Instability 1 1.1.2 Electrostatic Discharge 4 1.1.3 Motivation 5 1.2 Organization of the Dissertation 6 Chapter 2 Negative Bias Temperature Instability on PMOSFETs 9 2.1 Introduction 9 2.2 Experimental Technique 11 2.2.1 Split C-V Measurement 11 2.2.2 Charge Pumping Measurement 12 2.3 Effect of Mobility Degradation and Supply Voltage on NBTI Induced Drain Current Degradation 14 2.3.1 Experimental Details 14 2.3.2 Results and Discussion 15 2.4 Impact of Mobility Improvement on the Reliability of PMOSFETs 19 2.4.1 Experimental Details 19 2.4.2 Results and Discussion 21 2.5 Conclusions 22 Chapter 3 Dynamic Current Distribution of the Grounded Gate NMOS Devices under TLP Event 40 3.1 Introduction 40 3.2 Experimental Technique 42 3.2.1 Transmission Line Pulse 43 3.2.2 Direct Substrate Potential Measurement 44 3.3 Substrate Potential Propagation in the Substrate 45 3.3.1 Experimental Details 46 3.3.2 Waveform Analysis in the Substrate 47 3.3.3 Mathematical Deduction of Substrate Potential Propagation 49 3.4 Expansion of the Base Region under Different Current Levels Stress 51 3.4.1 Experimental Details 51 3.4.2 Self-Consistent Effect on GGNMOS Devices 52 3.5 Conclusions 56 Chapter 4 Substrate Potential to Maintain the Turn-On NPN Bipolar of the Grounded Gate NMOS Devices under TLP Event 74 4.1 Introduction 74 4.2 Substrate Potential versus Drain Current 76 4.2.1 Experimental Details 76 4.2.2 Minimum Substrate Potential to Sustain Turn-On NPN Bipolar 77 4.2.3 Effect of Series Resistance on Substrate Potential 80 4.3 DC and Pulse Simulation 81 4.3.1 Simulation Details 82 4.3.2 Results and Discussion 82 4.4 Conclusions 86 Chapter 5 Mechanism behind Drain Engineering Induced ESD Variation in Grounded Gate NMOS Devices 101 5.1 Introduction 101 5.2 Experimental Technique 103 5.2.1 Human-Body Model 104 5.2.2 Machine Model 104 5.3 Experimental Details 105 5.4 Influences of Drain Engineering on the Device ESD Performance 106 5.5 Conclusions 113 Chapter 6 Summary and Future Works 128 6.1 Summary 128 6.2 Suggestions for Future Works 130 References 132

    Chapter 1
    [1.1] Y. Miura and Y. Matukura, “Investigation of Silicon–Silicon Dioxide Interface Using MOS Structure,” Jpn. J. Appl. Phys., vol. 5, pp. 180-180, 1966.
    [1.2] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the Suuface-State Charge (Qss) of Thermal Oxidized Silicon,” J. Electrochem. Soc., vol. 114, pp. 266-274, 1967.
    [1.3] S. F. Hofstein, “Stabilization of MOS Devices,” Solid-State Electron., vol. 10, no. 7, pp. 657-670, 1967.
    [1.4] A. Goetzberger and H. E. Nigh, “Surface Charge After Annealing of Al–SiO2–Si Structures Under Bias,” in Proc. of the IEEE, vol. 54, no. 10, pp. 1454-1454, 1966.
    [1.5] A. Goetzberger, A. D. Lopez, and R. J. Strain, “On the Formation of Surface States during Stress Aging of Thermal Si-SiO2 Interfaces,” J. Electrochem. Soc., vol. 120, no. 1, pp. 90-96, 1973.
    [1.6] K. O. Jeppson and C. M. Svensson, “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices,” J. Appl. Phys., vol. 48, no. 5, pp. 2004-2014, 1977.
    [1.7] S. Ogawa and N. Shiono, “Generalized Diffusion-Reaction Model for the Low-Field Charge-Buildup Instability at the Si–SiO2 Interface,” Phys. Rev. B, vol. 51, no. 51, pp. 4218-4230, 1995.
    [1.8] S. S. Tan, T. P. Chen, C. H. Ang, and L. Chan, “Mechanism of Nitrogen-Enhanced Negative Bias Temperature Instability in PMOSFET,” Microelectronics Reliab., vol. 45, pp. 19-30, 2005
    [1.9] M. A. Alam and S. Mahapatra, “A Comprehensive Model of PMOS NBTI Degradation,” Microelectronics Reliab., vol. 45, pp. 71-81, 2005.
    [1.10] T. Green, “A review of EOS/ESD field failures in military equipment”, in Proc. EOS/ESD Symp., pp. 7-14, 1988.

    Chapter 2
    [2.1] C. Lin, A. I. Chou, K. Kumar, P. Chowdhury, and J. C. Lee, “Leakage current, reliability characteristics, and boron penetration of ultra-thin (32-36 Å) O2-oxides and N2O/NO Oxynitrides,” in IEDM Tech. Dig., pp. 331-334, 1996.
    [2.2] T. Aoyama, S. Ohkubo, H. Tashiro, Y. Tada, K. Suzuki, and K. Horiuchi, “Boron diffusion in nitrided-oxide gate dielectrics leading to high suppression of boron penetration in P-MOSFETs,” Jpn. J. Appl. Phys., vol. 37, pp. 1244-1250, 1998.
    [2.3] D. Writers, L. K. Han, T. Chen, H. H. Wang, D. L. Kwong, M. Allen, and J. Fulford, “Degradation of oxynitride gate dielectric reliability due to boron diffusion,” Appl. Phys. Lett., vol. 68, pp. 2094-2096, 1996.
    [2.4] N. Kimizuka, K. Yamaguchi, K. Iniai, T. Iizuka, C. T. Liu, R. C. Keller, and T. Horiuchi, “NBTI enhancement by nitrogen incorporation into ultrathin gate oxide for 0.10-μm gate CMOS generation,” in Symp. VLSI Tech., pp. 92-93, 2000.
    [2.5] A. T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, and S. Krishnan, “NBTI impact on transistor and circuit: models, mechanisms and scaling effects [MOSFETs],” in IEDM Tech. Dig., pp. 349, 2003.
    [2.6] S. Tsujikawa, T. Mine, K. Watanabe, Y. Shimamoto, R. Tsuchiya, K. Ohnishi, T. Onai, J. Yugami, and S. Kimura, “Negative bias temperature instability of pMOSFETs with ultra-thin SiON gate dielectrics,” in Proc. Int. Reliab. Phys. Symp., pp. 183-188, 2003.
    [2.7] S. Ogawa, M. Shimaya, and N. Shiono, “Interface-trap generation at ultrathin SiO2 (4-6 nm)-Si interfaces during negative-bias temperature aging,” J. Appl. Phys., vol. 77, no. 3, pp. 1137-1148, 1995.
    [2.8] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing,” J. Appl. Phys., vol. 94, no. 1, pp. 1-18, 2003.
    [2.9] S. Chakravarthi, A. T. Krishnan, V. Reddy, C. F. Machala, and S. Krishnan, “A comprehensive framework for predictive modeling of negative bias temperature instability,” in Proc. Int. Reliab. Phys. Symp., p. 273-282, 2004.
    [2.10] Y. F. Chen, M. H. Lin, C. H. Chou, W. C. Chang, S. C. Huang, Y. J. Chang, K. Y. Fu, M. T. Lee, C. H. Liu, and S. K. Fan, “Negative bias temperature instability (NBTI) in deep sub-micron p+-gate pMOSFETs,” in Proc. Int. Reliab. Phys. Workshop, p. 98-101, 2000.
    [2.11] H. Aono, E. Murakami, K. Okuyama, A. Nishida, M. Minami, V. Ooji, and K. Kubota, “Modeling of NBTI degradation and its impact on electric field dependence of the lifetime,” in Proc. Int. Reliab. Phys. Symp., pp. 23-27, 2004.
    [2.12] C. L. Chen, Y. M. Lin, C. J. Wang, and K. Wu, “A new finding on NBTI lifetime model and an investigation on NBTI degradation characteristic for 1.2nm ultra thin oxide,” in Proc. Int. Reliab. Phys. Symp., pp. 704-705, 2005.
    [2.13] W. Abadeer and W. Ellis, “Behavior of NBTI under AC dynamic circuit conditions,” in Proc. Int. Reliab. Phys. Symp., pp. 17-22, 2003.
    [2.14] G. Chen, K. Y. Chuah, M. F. Li, D. S. H. Chan, C. H. Ang, J. Z. Zheng, Y. Jin, and D. L. Kwong, “Dynamic NBTI of PMOS transistors and its impact on device lifetime,” in Proc. Int. Reliab. Phys. Symp., pp. 196-202, 2003.
    [2.15] S. S. Tan, T. P. Chen, C. H. An, and L. Chan, “A new waveform-dependent lifetime model for dynamic NBTI in PMOS transistor,” in Proc. Int. Reliab. Phys. Symp., pp. 35-39, 2004.
    [2.16] S. Rangan, N. Mielke, and E. C. C. Yeh, “Universal recovery behavior of negative bias temperature instability [PMOSFETs],” in IEDM Tech. Dig., pp. 341-344, 2003.
    [2.17] M. S. Akbar, M. Agostinelli, S. Rangan, S. Lad, C. Castillo, S. Pae, and S. Kashyap, “PMOS thin gate oxide recovery upon negative bias temperature stress,” in Proc. Int. Reliab. Phys. Symp., pp. 683-684, 2004.
    [2.18] G. E. Moore, Electronics, pp. 114, 1965.
    [2.19] H. Sayama, Y. Nishida, H. Oda, T. Oishi, S. Shimizu, T. Kunikiyo, K. Sonoda, Y. Inoue, and M. Inuishi, “Effect of <100> channel direction for high performance SCE immune pMOSFET with less than 0.15 μm gate length,” in IEDM Tech. Dig., pp. 657-660, 1999.
    [2.20] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, A. Iwai, M. Saito, F. Matsuoka, N. Nagashima, T. Noguchi, “Mobility improvement for 45nm node by combination of optimized stress and channel orientation design,” in IEDM Tech. Dig., pp. 217-220, 2004.
    [2.21] J. Koomen, “Investigation of the MOST channel conductance in weak inversion,” Solid State Electron., vol. 16, pp. 801-810, 1973.
    [2.22] C. Sodini, T. Ekstedt, and J. Moll, “Charge accumulation and mobility in thin dielectric MOS transistors,” Solid-State Electron., vol. 25, pp. 833-841, 1982.
    [2.23] C. Chen and T. P. Ma, “Direct lateral profiling of hot-carrier-induced oxide charge and interface traps in thin gate MOSFETs,” IEEE Trans.Electron Devices, vol. 45, pp. 512-520, Feb. 1998.
    [2.24] S. Zafar, M. Yang, E. Gusev, A. Callegari, J. Stathis, T. Ning, R. Jammy, and M. Ieong, “A comparative study of NBTI as a function of Si substrate orientation and gate dielectrics (SiON and SiON/HfO2),” in Symp. VLSI-TSA Tech., pp. 128-129, 2005.

    Chapter 3
    [3.1] A. Amerasekera, S. Ramaswamy, M. C. Chang and C. Duvvury, “Modeling MOS snapback and parasitic bipolar action for circuit-level ESD and high current simulations,” in Proc. Int. Reliab. Phys. Symp., pp. 318-326, 1996.
    [3.2] R. Constapel, “Unclamped Inductive Switching of Integrated Quasi-Vertical DMOSFETs,” in Proc. IEEE Int. Symp. on Power Semiconductor Dev. and ICs., pp. 219-222, 1996.
    [3.3] E. Sun, J. Moll, J. Berger, and B. Alders, “Breakdown mechanism in short-channel MOS transistors,” in IEDM Tech. Dig., pp. 478-482, 1978.
    [3.4] T. Toyabe, K. Yamaguchi, S. Asai, and M. Mock, “A numerical model of avalanche breakdown in MOSFETs,” IEEE Trans. Electron Devices, vol. 25, pp. 825-832, Jul. 1978.
    [3.5] D. P. Kennedy and A. Jr. Phillips, “Source-drain breakdown in an insulated gate field-effect transistor,” in IEDM Tech. Dig., pp. 160-163, 1973.
    [3.6] K. H. Oh, C. Duvvury, K. Banerjee, and R. W. Dutton, “Analysis of nonuniform ESD current distribution in deep submicron NMOS transistors,” IEEE Trans. Electron Devices, vol. 49, pp. 2171-2182, 2002.
    [3.7] C. Russ, K. Bock, M. Rasras, ID Wolf, G. Goreseneken, and H. E. Maes, “Non-uniform Triggering of gg-nMOSt Investigated by Combined Emission Microscopy and Transmission Line Pulsing,” in Proc. EOS/ESD Symp., pp. 177-186, 1998.
    [3.8] T.-Y. Chen and M.-D. Ker, “Investigation of the gate-driven effect and substrate-triggered effect on ESD robustness of CMOS devices,” IEEE Trans. Device And Materials Reliab., vol.1, pp. 190-203, 2002.
    [3.9] J.-H. Lee, K.-M. Wu, S.-C. Huang, and C.-H. Tang, “The dynamic current distribution of a multi-fingered GGNMOS under high current stress and HBM ESD events,” in Proc. Int. Reliab. Phys. Symp., pp. 629-630, 2006.
    [3.10] T. Maloney and N. Khurana, “Transmission Line Pulsing Techniques for Circuit Modeling of ESD Phenomena,” in Proc. EOS/ESD Symp., pp. 49-54, 1985.
    [3.11] N. Khurana, T. Maloney, and W. Yeh, “ESD on CHMOS Devices – Equivalent Circuits, Physical Models and Failure Mechanisms,” in Proc. Int. Reliab. Phys. Symp., pp. 212-223, 1985.
    [3.12] J. Barth, J. Richner, K. Verhaege, and L. G. Henry, “TLP calibration, correlation, standards, and new techniques,” in Proc. EOS/ESD Symp., pp. 85-96, 2000.
    [3.13] T. Skotnicki, G. Merckel, and A. Merrachi, “New physical model of multiplication-induced breakdown in MOSFETs,” Solid-State Electron., vol. 34, pp. 1297–1307, Nov. 1991.
    [3.14] S. G. Beebe, “Methodology for layout design and optimization of ESD protection transistors,” in Proc. EOS/ESD Symp., pp. 265-275, 1996.
    [3.15] Myint-U Tyn, Partial Differential Equations of Mathematical Physics, NY: North Holland; pp. 321, 1980.
    [3.16] D.-H. Yang, J. F. Chen, J.-H. Lee, and K.-M. Wu, “Dynamic turn-on mechanism of the n-MOSFET under High-Current Stress,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 895-897, 2008.
    [3.17] J.-H. Lee, J.-R. Shih, Y.-H. Wu, B.-K. Liew, and H.-L. Hwang, “An analytical model of positive HBM ESD current distribution and the modified multi-finger protection structure,” in Proc. IPFA Symp., pp. 162-167, 1999.
    [3.18] H. P. Zappe and C. Hu, “A p-v-n diode model for CMOS latchup,” Solid-State Electron., vol. 34, pp. 1275-1279, Nov. 1991.
    [3.19] J.-H. Lee, W.-T. Weng, J.-R. Shih, K.-F. Yu, and T.-C. Ong, “The positive trigger voltage lowering effect for latch-up,” in Proc. IPFA Symp., pp. 85-88, 2004.

    Chapter 4
    [4.1] A. Amerasekera, S. Ramaswamy, M.-C. Chang, and C. Duvvury, “Modeling MOS snapback and parasitic bipolar action for circuit-level ESD and high current simulations,” in Proc. Int. Reliab. Phys. Symp., pp. 318-326, 1996.
    [4.2] S. Ramaswamy, A. Amerasekera, and M.C. Chang, “A Unified Substrate Current Model for Weak and Strong Impact Ionization in sub-0.25μm NMOS Devices,” in IEDM Tech. Dig., pp. 885-888, 1997.
    [4.3] T. Skotnicki, G. Merckel, and A. Merrachi, “New Physical Model of Multiplication-Induced Breakdown in MOSFETs,” Solid-State Electron., vol. 34, pp. 1297-1307, Nov. 1991.
    [4.4] E. Sun, J. Moll, J. Berger, and B. Alders, “Breakdown mechanism in short-channel MOS transistors,” in IEDM Tech. Dig., pp. 478-482, 1978.
    [4.5] T. Toyabe, K. Yamaguchi, S. Asai, and M. Mock, “A numerical model of avalanche breakdown in MOSFETs,” IEEE Trans. Electron Devices, vol. 25, pp. 825-832, Jul. 1978.
    [4.6] D. P. Kennedy and A. Jr. Phillips, “Source-drain breakdown in an insulated gate field-effect transistor,” in IEDM Tech. Dig., pp. 160–163, 1973.
    [4.7] R. N. Rountree, Charles L. Hutchins, “NMOS Protection Circuitry”, IEEE Trans. Electron Devices, No.5, pp.910, 1985.
    [4.8] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits,2nd ed. New York: Wiley, 2002.
    [4.9] S. L. Miller, “Ionization rates for holes and electrons in silicon,” Phys. Rev. Lett., vol. 105, no. 4, pp. 1246-1249, Feb. 1957.
    [4.10] J.-H. Lee, K.-M. Wu, S.-C. Huang, and C.-H. Tang, “The dynamic current distribution of a multi-fingered GGNMOS under high current stress and HBM ESD events,” in Proc. Int. Reliab. Phys. Symp., pp. 629-630, 2006.
    [4.11] X. Y. Zhang, K. Banerjee, A. Amerasekera, V. Gupta, Z. Yu, and R. W. Dutton, “Process and layout dependent substrate resistance modeling for deep sub-micron ESD protection devices,” in Proc. Int. Reliab. Phys. Symp., pp. 295-303, 2000.
    [4.12] D.-H. Yang, J. F. Chen, J.-H. Lee, and K.-M. Wu, “Dynamic turn-on mechanism of the n-MOSFET under High-Current Stress,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 895-897, 2008.

    Chapter 5
    [5.1] T. Toyabe, K. Yamaguchi, S. Asai, and M. Mock, “A numerical model of avalanche breakdown in MOSFETs,” IEEE Trans. Electron Devices, vol. 25, no. 7, pp. 825–832, Jul. 1978.
    [5.2] R. N. Rountree and L. H. Charles., “NMOS Protection Circuitry”, IEEE Trans. Electron Devices, No.5, p.910, 1985.
    [5.3] Y. Wei, Y. Loh, C. Wang and C. Hu, “MOSFET Drain Engineering For ESD performance,” in Proc. EOS/ESD Symp., pp. 143-146, 1992.
    [5.4] K.-L. Chen, “The Effects of Interconnect Process and Snapback Voltage on the ESD Failure Threshold of NMOS Transistors,” IEEE Trans. Electron Devices, p. 2140-2150, 1988.
    [5.5] J.-H. Lee, J. R. Shih, D.-H. Yang, J. F. Chen, and K. Wu, “A novel ESD device structure with fully silicide process for mixed high/low voltage operation,” in Proc. IPFA Symp., pp. 1-4, 2008.
    [5.6] S. S. Mark and H. W. Marvin, “Protecting N-Channel Output Transistors From ESD Damage”, in Proc. EOS/ESD Symp., pp.110-119, 1991.
    [5.7] D. C. Wunsch, “The application of electrical overstress models to Gate Protection Network”, in Proc. Int. Reliab. Phys. Symp., pp.47-55, 1973.
    [5.8] W. B. Runyan: Silicon Semiconductor Technology, New York: McGraw-Hill, pp. 167, 1965.
    [5.9] “MIL STD 883.C/3015.7 notice 8,” Military Standard for Test Methods and Procedures for Microelectronics: ESD Sensitivity Classification, March 22, 1989.
    [5.10] L. J.Van Roozendaal, A. Amerasekera, P. Bos, W. Baelde, F. bontekoe, P. Kersten, E. Korma, P. Rommers, P. Krys, U. Weber, and P. Ashby, “Standard ESD Testing,” in Proc. EOS/ESD Symp., pp. 119-130, 1990.
    [5.11] J.E. Barth, K. Verhaege, L.G. Henry, and J. Richner, “TLP calibration, correlation, standards, and new techniques” Electronics Packaging Manufacturing, IEEE Transactions on, Vol. 24, no. 2, pp. 99-108, 2001.
    [5.12] J. H. Lee, J. R. Shih, K. F. Yu, Y. H. Wu, J. Y. Wu, J. L. Yang, C. S. Hou, and T. C. Ong, “High current characteristics of copper interconnect under transmission-line pulse (TLP) stress and ESD zapping”, in Proc. Int. Reliab. Phys. Symp., pp.607-608, 2004.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE