| 研究生: |
陳清典 Chen, Tommy |
|---|---|
| 論文名稱: |
MTi4P6O24 (M = Ba, Sr)的合成、燒結與其熱膨脹及介電性質 Preparation, Thermal Expansion, and Dielectric Properties of MTi4P6O24 (M = Ba, Sr) |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 介電性質 、熱膨脹 、燒結 |
| 外文關鍵詞: | NZP, dielectric properties, thermal expansion, sintering |
| 相關次數: | 點閱:47 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NZP型 (以NaZr2(PO4)3為代表化學式的簡稱) 的材料都有很好的抗熱震性,某些成分更具有其他的特殊性質。然而前人對許多系列成分的熱膨脹性質已有完整的分析,但其他性質的研究卻仍不夠齊全。在鹼土族鈦磷酸鹽類中,鈦磷酸鋇的膨脹異方性和膨脹係數最小,而鈦磷酸鍶卻是最大的,此研究乃是針對此二種成分的粉末合成、坯體燒結與其熱膨脹及介電性質分析作為研究目標。
前人多以起始原料的分解溫度來進行固相反應法的煆燒,與本研究所得之DTA資料分析的溫度相差甚大,故乃配合XRD的相鑑定以決定固相反應的煆燒條件和反應過程。同時亦以化學共沉法合成,並得到 (相對於固相反應法) 製程短、晶粒小但凝聚大的粉末。接著從燒結體密度上發現,改變燒結條件或不同合成法的粉末都無法有效地提高燒結緻密度,由於NZP型材料一直有燒結緻密的困難,依前人經驗添加助劑幫助燒結最為有效,但為減少第二相的比例,乃控制不同的燒結條件,以求緻密度與第二相的平衡。最後的性質量測中,在熱膨脹方面,鈦磷酸鋇的量測與前人的晶軸熱膨脹能合理的符合,但鈦磷酸鍶的量測卻出現不合理的結果。而介電性質方面,鈦磷酸鋇與鈦磷酸鍶的相對介電常數約在15~20之間,屬於低介電範圍,但其品質因子卻不夠高,顯示仍需在密度與第二相之間做進一步的改善。
NZP structure type materials have good thermal-shock-resistant property and some compositions even have other good properties. From past studies thermal expansion characteristic has complete analysis about many series of NZP type materials, but other properties do not. Among the alkaline earth titanium phosphate, the thermal expansion and expansion anisotropy of barium titanium phosphate is the smallest, but of strontium titanium phosphate is the largest. This research work would focus on the synthesis, sintering, thermal expansion and dielectric properties analysis of dense bulks.
The past solid-state reaction calcination depended on the decomposition temperature of starting materials, but there is a large difference between decomposition temperature and DTA measurement. So we determined the solid- state reaction calcination condition via phase identification of XRD and DTA measurement. Moreover we also synthesized from chemical co-precipitation method, and get short-process, small-size, large-agglomerate powder. After sintering, we knew we could not enhance the densities efficiently via changing sintering condition or different synthesis powder. It is always hard to sinter densely for NZP structure type materials, so past studies sintered densely with sintering aid. But for reducing the second phase, we controlled some sintering conditions to get the balance between density and the second phase. The thermal expansion measurement of BaTi4(PO4)6 bulk could agree the past axial thermal expansion, but of SrTi4(PO4)6 bulk could not agree the past axial thermal expansion. In dielectric properties measurement, the dielectric constants of BaTi4(PO4)6 and SrTi4(PO4)6 are both about 15~20 and belong to low-dielectric materials. The experimental bulks displayed low quality factors, so we still have to improve the density and the second phase of the experimental bulks.
1.J. P. Boilot, J. P. Salanie, G. Desplanches, and D. Le Potier, “Phase Transformation in Na1+XZr2SiXP3-XO12 Compounds,” Mat. Res. Bull., 14, 1469-1477 (1979).
2.J. B. Goodenough, H. Y-P. Hong, and J. A. Kafalas, “Fast Na+-Ion Transport in Skeleton Structures,” Mat. Res. Bull., 11, 203-220 (1976)
3.S. A. Okonenko, S. Yu. Stefanovich, V. B. Kalinin, and Yu. N. Enevtsev, “New Ferroelectric Na3Sc2(PO4)3,” Sov. Phys. Solid State, 20, 1647-1648 (1978).
4.R. Roy, E. R. Vance, and J. Alamo, “[NZP], A New Radiophase for Ceramic Nuclear Waste Forms,” Mat. Res. Bull., 17, 585-589 (1982).
5.S. Y. Limaye, D. K. Agrawal, and H. A. McKinstry,“Synthesis and Thermal Expansion of MZr4P6O24 (M=Mg, Ca Sr, Ba) ,” J. Am. Cerm. Soc., 70, C232-236 (1987).
6.L. O. Hagman and P. Kierkegaard, “The Crystal Structure of NaMe2IV(PO4)3; MeIV=Ge, Ti, Zr,” Acta Chemical Scandianvica, 22, 1822-1832 (1968).
7.C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure Type Materials, Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania (1990).
8.Srikari Tantri P., S. Ushadevi, and S. K. Ramasesha, “High Temperature X-ray Ttudies on Barium and Strontium Zirconium Phosphate Based Bow Thermal Expansion Materials,” Mat. Res. Bull., 37, 1141-1147 (2002).
9.H. Y-P. Hong, “Crystal Structure and Ionic Conductivity of a New Superionic Conductor, Na3Sc2P3O12,” Fast Ionic Transport in Solid, Vashishta, Mundy, Shenoy Eds., Elsevier North Holland, Inc., New York, 431-433 (1979).
10.A. K. Ivanov-Shits, “Electrical Conductivity of Single Crystals of Superionic Conductor, Na5YSi4O12,” Soc. Phys. Solid State, 23 (1), 84-86 (1981).
11.B. E. Taylor, A. D. English, and T. Berzins, “New Solid Ionic Conductors,” Mat. Res. Bull., 12, 171-182 (1977).
12.Y. Miyajima, T. Miyoshi, J. Tamaki, M. Matsuoka, Y. Yamamoto, C. Masquelier, M. Tabuchi, and Y. Saito, “Solubility Range and Ionic Conductivity of Large Trivalent Ion Doped Na1+XMXZr2-XP3O12 (M: In, Yb, Er, Y, Dy, Tb, Gd) Solid Electrolytes,” Solid State Ionics, 24, 201-211 (1999).
13.K. L. Keester and J. T. Jacobs, Ferroelectrics 8, 657 (1974).
14.L. J. Yang, S. Komarneni, and R. Roy, “Titanium-Phosphate (NZP) Waste Form,” Nucl. Chem. Waste Management, Vol. 8 in Advances in Ceramic, G. G. Wicks and W. A. Ross Eds., The Am. Ceram. Soc., 255-262 (1984).
15.L. J. Yang, S. Komarneni, and R. Roy, “Leach Resistance of NZP Waste Form,” Nucl. Chem. Waste Management, Vol. 8 in Advances in Ceramic, G. G. Wicks and W. A. Ross Eds., The Am. Ceram. Soc., 377-384 (1984).
16.L. J. Yang, S. Komarneni, and R. Roy, “Gel Adsorption Processing for Waste Solidification in NZP Ceramic,” Scientific Basis for Nuclear Waste Management, Vol. 7, G. L. McVay Ed., 567-574 (1984).
17.L. Bois, M. J. Guittet, F. Carrot, P. Trocellier, and M. Gautier-Soyer, “Preliminary Results on the Leaching Process of Phosphate Ceramic, Potential Hosts for Actinide Immobilization,” J. Nucl. Mater., 297, 129-137 (2001).
18.M. Sugantha, N. R. S. Kumar, and U. V. Varadaraju, “Synthesis and Leachability Studies of NZP and Eulytine Phases,” Waste Management, 18, 275-279 (1998).
19.G. Buvaneswari, U. V. Varadaraju, “Low Leachability Phosphate Lattice for Fixation of Select Metal Ions,” Mat. Res. Bull., 35, 1313-1323 (2000).
20.M. C. Cuadrado and J. Alamo, “Cr-Doped Zirconium Phosphate Pigment,” Br. Ceram. Trans. J., 87, 141-144 (1988).
21.D. K. Agrawal and V. S. Stubican, “Synthsis and Sintering of Ca0.5Zr2P3O12 –A Low Thermal Expansion Material,” Mat. Res. Bull., 20, 99-106 (1985).
22.B. Angadi, V. M. Jali, M. T. Lagare, N. S. Kini, A. M. Umarji, R. Kumar, S. K. Arora, and D. Kanjilal, “50 MeV Li3+ Irradiation Effects on the Thermal Expansion of Ca1-XSrXZr4P6O24,” Nuclear Instruments and Methods in Physics Research B, 187, 87-94 (2002).
23.A. I. Orlova, D. V. Kemenov, V. I. Pet’kov, M. V. Zharinova, G. N. Kazantsev, S. G. Samoilov, and V. S. Kurazhkovskaya, “Ultra Low and Negative Thermal Expansion in Zirconium Phosphate Ceramics,” High Temp.-High Press., 34, 315-322 (2002).
24.V. I. Pet’kov, M. Sukhanov, and A. I. Orlova, “Synthesis and Characterization of Niobium-Bearing Members of the NZP and NbOPO4 Structural Families,” Phosphorus Sulfur, 177, 1499-1501 (2002).
25.C. S. Yoon, C. K. Kim, T. Y. Byun, and K. S. Hong, “Synthesis and Thermal Expansion Behavior of Liquid Phase Sintered CaZr4P6O24-Li2O,” Mater. Chem. Phys., 77, 930-937 (2002).
26.A. I. Kryukova, I. A. Korshunov, E. P. Moskvichev, V. A. Mitrofanva, N. V. Vorob’eva, G. N.Kazantsev, and O. V. Skiba, “Preparation and Study of the Crystal Structure of Compounds of the M3IM2II(PO4)3 Type,” Russ. J. Inorg. Chem., 21, 1048-1049 (1976).
27.A. Clearfield, P. Jerus, and R. N. Cotman, “Hydrothermal and Solid State Synthesis of Sodium Zirconium Silicophosphates,” Solid State Ionic, 5, 301-304 (1981).
28.S. Komarneni, “Hydrothermal Prepartion of the Low-Expansion NZP Family of Materials,” Int. J. High Tech. Ceram., 4, 31-39 (1988).
29.C. S. Hong, P. Ravindranathan, D. K. Agrawal, and R. Roy, “Synthesis and Sintering of Ca0.5Sr0.5Zr4P6O24 Powders by the Decomposition of Ca-, Sr-, Nitrate-Ammonium Dihydrogen Phosphate-Urea Mixtures,” J. Mater. Res., 9, 2398-2404 (1994).
30.E. Breval and D. K. Agrawal, “Synthesis of [NZP]-Structure-Type Materials by the Combustion Reaction Method,” J. Am. Ceram. Soc., 81[7], 1729-1735 (1998).
31.A. K. Kuriakose, T. A. Wheat, A. Ahmad, and J. Dirocco, “Synthisis, Sintering and Microstructure of Nasicons,” J. Am. Ceram. Soc., 67[3], 179-183 (1984).
32.Handbook of Chemistry and Physics College Edition, 46th Ed., The Chemical Rubber Co., Ohio, (1965-1966).
33.周德瑜,四氯化鈦之控制水解研究。國立中央大學化學工程研究所碩士論文,民國九十年。
34.Y. Arai, Chemistry of Powder Production, Chapman and Hall Inc., London, (1991).
35.J. Stalford, Principles of Ceramics Processing, 2nd Ed., John Wiley and Sons Inc., New York, (1995).
36.H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida, “Hydrothermal Synthesis of Nanosized Anatase and Rutile TiO2 Using Amorphous Phase TiO2”, J. Mater. Chem., 11, 1694-1703 (2001).
37.J. Yang, S. Mei, and J. M. F Ferreira, “Hydrothermal Synthesis of Nanosize Titania Powder: Influence of Peptization and Peptizing Agents on the Crystalline Phases and Phase Transitions,” J. Am. Ceram. Soc., 83, 1361-1368 (2000).
38.陳晉億,鹼土族鋯磷氧化物的高溫穩定性及熱膨脹行為,國立成功大學資源工程研究所碩士論文,民國八十六年。
39.盧詩文,MZr2P3O12 (M=Na, K, Rb) 的合成及其微結構性質之關係,國立成功大學資源工程研究所碩士論文,民國八十二年。
40.李佩元,MZr4P6O24 (M=Ca, Sr, Ba) 陶瓷材料的合成及其熱膨脹性質,國立成功大學資源工程研究所碩士論文,民國八十四年。
41.陳建中,MZr4P6O24 (M=Ca, Sr, Ba) 陶瓷材料的結構與熱膨脹行為,國立成功大學資源工程研究所碩士論文,民國八十四年。
42.Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee Eds., Thermal Expansion-Nonmetallic Solids, Vol. 13 in Thermophysical Properties of Matter, The TPRC Data Series, IFI/Plenum, New York, (1977).
43.吳朗,電子陶瓷-介電,全欣科技圖書編印,民國八十三年。
44.W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., John Wiley and Sons Inc., New York, (1976).