| 研究生: |
陳運穎 Chen, Yun-Ying |
|---|---|
| 論文名稱: |
金屬矽酸鹽孔洞材料之合成與應用 Synthesis and Application of Porous Metal-Silicates |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | phyllosilicate 、金屬矽酸鹽孔洞材料 、氧化矽剝蝕法 、水熱重組法 |
| 外文關鍵詞: | phyllosilicate, zinc silicate, copper silicate, nickel silicate, catalyst |
| 相關次數: | 點閱:107 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於,利用簡單且快速的方式合成出具高表面積及高金屬氧化物分散性的金屬矽酸鹽(metal-silicate)孔洞材料,並對其應用進行探討。研究中發現此類型的材料,依照金屬氧化物的不同,可分別應用於催化觸媒、吸附劑以及螢光材料上,且都具有不錯的效果。藉由模擬自然界phyllosilicate礦物的生成機制,發展出二種合成方式,並致力於研究各類型metal-silicate之合成條件,以達到對材料表面積、孔洞大小以及金屬氧化物嵌入量的控制。
(1) 氧化矽剝蝕法製備zinc-silicate孔洞材料
對於zinc-silicate孔洞材料合成法的研究,是先製備出Zn(OH)2沉澱物,再引入中孔洞氧化矽,並利用100oC水熱所提供的能量,使中孔洞氧化矽溶解、剝蝕Zn(OH)2,並經由重組排列形成捲曲的片狀結構。在pH = 8.0,Zn/SiO2 = 0.60的合成條件下,經由水熱一天的反應,即可得到具有高面積(225 m2/g)及高分散性的zinc-stevensite材料。應用上,將此zinc-stevensite材料吸附適當濃度的Mn2+離子,並經由900oC煅燒,使其轉相為Zn2SiO4:Mn2+,發現其在254 nm UV光的照射下,具有良好的綠色放光特性,使其在螢光粉的應用上具有潛力。
(2) 水熱重組法製備copper-silicate及nickel-silicate孔洞材料
為了更貼近自然界形成phyllosilicate的過程,本實驗將矽酸鈉酸化並加入金屬離子溶液,利用NaOH(aq)先合成amorphous metal-silicate沉澱物,再藉由水熱過程,金屬氫氧化物與氧化矽之間的溶解再重組過程,形成類管狀結構的copper phyllosilicate以及捲曲片狀結構的nickel phyllosilicate。此外,藉由改變實驗條件(反應pH值、金屬/氧化矽比例、水熱反應時間、氧化矽來源、反應濃度等),找尋一最佳合成條件,並發現此合成方式具有很好的再現性和組成包容性,利用便宜的工業級矽酸鈉作為氧化矽來源,所合成的copper-silicate產物表面積可達到577 m2/g,而nickel-silicate達到507 m2/g,此結果對於大量合成的便利性和成本的考量是一大優勢。
在應用方面,經過初步的測試,發現以水熱重組法製備的metal-silicates具有良好的催化效果:添加10 wt.% Fe的copper-silicate應用於甲醇產氫觸媒,而nickel-silicate則作為氨氣分解產氫之催化劑。
另外,在製備nickel-silicate複合材料的實驗過程中發現,藉由簡單的實驗條件的改變,以水熱後高結晶度的Ni(OH)2作為核心模板,改變不同的Ni/SiO2比例、水熱pH值,並經過水熱反應後,可得到具有六角板狀的Ni(OH)2@SiO2¬孔洞材料,將此材料進行酸洗及在高溫下熱裂解,分別可得到空心六角板狀的中孔洞氧化矽材料以及Ni NPs@SiO2高磁性複合材料。
To mimic the formation of the clay minerals in Nature, we provided two facile and simple methods to prepare mesostructural metal-silicate materials. One method is the silicate-exfoliating to the metal hydroxides to form the metal-silicates during hydrothermal treatment. The other is the hydrothermal reconstruction between the metal-silicate composites in alkaline solution. First, we prepared the amorphous metal-silicates by adding NaOH(aq) to a acidified metal ion-silicate solution, and then, the metal phyllosilicates formed after hydrothermal treatment. The effect of pH, the metal to silica ratio, hydrothermal time, silica sources, and other experimental parameters were also discussed in detail. The resulted metal-silicate materials, including sheet-like zinc silicate, nickel silicate, and tubular-like copper silicate, have large surface areas and well dispersed metal oxide active sites. In practice, these metal-silicate materials demonstrate high performances to be used as catalysts and phosphor.
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
2. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
3. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
4. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
5. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
6. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
7. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
8. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
9. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-1262.
10. A. Walcarius, M. Etienne and B. Lebeau, Chem Mater, 2003, 15, 2161-2173.
11. T. Yokoi, H. Yoshitake and T. Tatsumi, J Mater Chem, 2004, 14, 951-957.
12. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
13. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-417.
14. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
15. Z. Zhong, Y.-d. Yin, B. Gates and Y. Xia, Advanced Materials, 2000, 12, 206-209.
16. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
17. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
18. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-17.
19. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
20. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
21. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
22. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
23. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
24. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
25. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
26. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
27. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
28. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
29. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
30. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
31. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
32. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
33. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
34. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
35. D. R. Rolison, Science, 2003, 299, 1698-1701.
36. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
37. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
38. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
39. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
40. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
41. 中國地質大學-精品課程網, 第二十一章第四節.
42. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv Polym Sci, 1999, 138, 107-147.
43. Soil and Environmental Biogeochemistry @ Stanford University, Soil Chemistry, Mineral-Summary.
44. B.N Figgis(Ed),Introduction to ligand Fields,1975
45. A.M. Stoneham(Ed),Theory of Defects in Solids,1975
46. G. Blasse and B.C.“Grabmaier,Luminescent Materials”,1994
47. R.C. Popp,“Luminescence and the solid state”,1991
48. 劉如熹、紀喨勝,“紫外光發光二極體用螢光介紹”2003
49. P.Atkins and L.Jones, “Chemistry molecules,Matter,and Change”,1997
50. 劉如熹、王健源,“白光發光二極體製作技術”2001
51. K. S. Sing, Pure and applied chemistry, 1985, 57, 603-619.
52. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 1930, 16, 578.
53. T. Sato, M. Tanaka and K. Usui, Google Patents, 1987.
54. 许海艇, 徐光青, 郑治祥 and 吴玉程, 过程工程学报, 2011, 11, 509-513.
55. P. Ramakrishna, D. Murthy and D. Sastry, Ceramics International, 2014, 40, 4889-4895.
56. K. S. Sohn, B. Cho and H. D. Park, Journal of the American Ceramic Society, 1999, 82, 2779-2784.
57. G. Xu, H. Xu, Z. Zheng and Y. Wu, Journal of Luminescence, 2010, 130, 1717-1720.
58. T. H. Cho and H. J. Chang, Ceramics International, 2003, 29, 611-618.
59. Y. Hao and Y. Wang, Journal of luminescence, 2007, 122, 1006-1008.
60. M. Takesue, K. Shimoyama, S. Murakami, Y. Hakuta, H. Hayashi and R. L. Smith Jr, The Journal of Supercritical Fluids, 2007, 43, 214-221.
61. A. Morell and N. El Khiati, Journal of The Electrochemical Society, 1993, 140, 2019-2022.
62. C. Bertail, S. Maron, V. Buissette, T. Le Mercier, T. Gacoin and J.-P. Boilot, Chemistry of Materials, 2011, 23, 2961-2967.
63. W. T. Lu, A. K. Singh, S. A. Khan, D. Senapati, H. T. Yu and P. C. Ray, J Am Chem Soc, 2010, 132, 18103-18114.
64. F. L. Chen, I. W. Sun, H. P. Wang and C. H. Huang, J Nanomater, 2009, 1-4.
65. J. A. Melero, G. Calleja, F. Martinez and R. Molina, Catal Commun, 2006, 7, 478-483.
66. Y. Liu and M. Liu, Adv Funct Mater, 2005, 15, 57-62.
67. D. J. Maxwell, J. R. Taylor and S. M. Nie, J Am Chem Soc, 2002, 124, 9606-9612.
68. Z. Y. Zhong, V. Ng, J. Z. Luo, S. P. Teh, J. Teo and A. Gedanken, Langmuir, 2007, 23, 5971-5977.
69. S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha and T. Punniyamurthy, J Org Chem, 2009, 74, 1971-1976.
70. C. Van Der Grift, P. Elberse, A. Mulder and J. Geus, Applied catalysis, 1990, 59, 275-289.
71. M. Srinivas, P. Srinivasu, S. K. Bhargava and M. L. Kantam, Catalysis Today, 2013, 208, 66-71.
72. H. Yue, Y. Zhao, S. Zhao, B. Wang, X. Ma and J. Gong, Nature communications, 2013, 4.
73. H. Qin, N. Shaji, N. E. Merrill, H. S. Kim, R. C. Toonen, R. H. Blick, M. M. Roberts, D. E. Savage, M. G. Lagally and G. Celler, New J Phys, 2005, 7, 241.
74. M. R. Yu, Y. Huang, J. Ballweg, H. Shin, M. H. Huang, D. E. Savage, M. G. Lagally, E. W. Dent, R. H. Blick and J. C. Williams, Acs Nano, 2011, 5, 2447-2457.
75. S. Sá, H. Silva, L. Brandão, J. M. Sousa and A. Mendes, Applied Catalysis B: Environmental, 2010, 99, 43-57.
76. W. Gu, J.-P. Shen and C. Song, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 2003, 48, 804.
77. C.-C. Li, Y.-W. Chen, R.-J. Lin, C.-C. Chang, K.-H. Chen, H.-P. Lin and L.-C. Chen, Chemical Communications, 2011, 47, 9414-9416.
78. T. Choudhary, C. Sivadinarayana and D. Goodman, Catalysis Letters, 2001, 72, 197-201.
79. W. Arabczyk and J. Zamlynny, Catalysis letters, 1999, 60, 167-171.
80. D. Varisli and N. G. Kaykac, Applied Catalysis B: Environmental, 2012, 127, 389-398.
81. A. Boisen, S. Dahl, J. K. Nørskov and C. H. Christensen, Journal of Catalysis, 2005, 230, 309-312.
82. M. Feyen, C. Weidenthaler, R. Güttel, K. Schlichte, U. Holle, A. H. Lu and F. Schüth, Chemistry-A European Journal, 2011, 17, 598-605.
83. S. Yin, B. Xu, X. Zhou and C. Au, Applied Catalysis A: General, 2004, 277, 1-9.
84. D. Cheddie, 2012.
85. S. B. Simonsen, D. Chakraborty, I. Chorkendorff and S. Dahl, Applied Catalysis A: General, 2012, 447, 22-31.
86. H. Zhang, Y. A. Alhamed, Y. Kojima, A. A. Al-Zahrani, H. Miyaoka and L. A. Petrov, International Journal of Hydrogen Energy, 2014, 39, 277-287.
87. Y. Ozawa and Y. Tochihara, Catalysis Today, 2011, 164, 528-532.
88. D. A. Hansgen, D. G. Vlachos and J. G. Chen, Nature Chemistry, 2010, 2, 484-489.