簡易檢索 / 詳目顯示

研究生: 梁育瑋
Liang, Yu-Wei
論文名稱: 奈米粒子嵌入雞蛋白薄膜製作有機非揮發性電阻式記憶體之研究
Investigation of Nonvolatile Resistive Memory Devices with Nanoparticles Embedded in Chicken Albumen Films
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 95
中文關鍵詞: 電阻式記憶體雞蛋白量子點金奈米粒子接觸壓印
外文關鍵詞: resistive random access memory (RRAM), Chicken Albumen, quantum dots (QDs), gold-nanoparticles (Au-NPs), contact-printing
相關次數: 點閱:124下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,首先針對以雞蛋白製作有機非揮發性電阻式記憶體並詳細探討元件之電特性以及記憶體轉換特性。藉由電流電壓特性分析得知元件的電流傳輸,於OFF狀態時以熱產生自由載子(Thermally generated free carriers)和空間電荷侷限電流(Space charge limited current)兩種傳輸理論為主,當元件切換至ON狀態時,載子傳輸則是以歐姆定律的型式移動,而這元件的ON/OFF轉換特性都是由燈絲傳導機制(Filamentary conduction)所造成,其機制可藉由元件轉換到ON狀態的限制電流和轉換到OFF狀態前的最高電流的線性關係證明。元件都具有不錯的開關切換之能力(>500次)以及大的開關電流比(~103)。除此之外,元件都可以在十萬秒內保持穩定的ON和OFF狀態。
    以金奈米粒子(Au nanoparticles, Au-NPs)和硒化鎘/硫化鋅量子點(CdSe/ZnS quantum dots, QDs)兩種奈米子來製作雞蛋白記憶體元件為本論文之研究重點,元件的ON/OFF轉換主要特性轉變為載子抓取/釋放傳導機制(Charge trapping/de-trapping conduction)所造成。元件之做法是將奈米粒子以旋轉塗佈(spin-coating)以及接觸壓印(contact-printing)兩種方式嵌入雞蛋白薄膜內。當金奈米粒子以旋轉塗佈方式沉積時,元件之穩定度可被顯著提升,於ON和OFF狀態之電流都可以持續穩定維持超過一百萬秒,另外也發現元件的重複寫入和抹除的能力與所設定之操作電壓有關。當寫入、抹除、讀取電壓分別被設於-1、2和0.1伏特時,元件的切換次數可超過1500次,伴隨電流開關比為 ~104。而當量子點薄膜以接觸壓印方式沉積時,可以得到幾乎相同之結果。另外我們也發現將此方法用於元件面積微小化時,可以改善元件本身之良率問題,而當面積為0.64 mm2時元件良率可達96%。

    In the thesis, the resistive switching devices of metal/insulator/metal (MIM) structure with Chicken Albumen have been fabricated and characterized. The operation mechanisms of the fabricated devices are analyzed by theoretical models. The conduction mechanisms of both of the Albumen-devices at OFF state are attributed to the thermally generated free carriers and space charge limited current, while the current transport at ON state appears to abide the Ohm's Law. The switching behaviors observed in both devices are due to the filamentary conduction mechanism, which can be confirmed by the relationship between the turn-on compliance current and turn-off current. The Albumen-devices demonstrate a good switching property (>500 cycles), large on/off current ratio (~103). Moreover, the ON and OFF state current are stable for 105 seconds at a reading voltage of + 0.1 V.
    Additionally, this article also presents the nonvolatile memory effects in the NPs film, where inorganic semiconductor NPs, including Au-NPs or CdSe/ZnS QDs, are embedded in the Chicken Albumen films formed by using the spin-coating and contact-printing methods. The major memory behavior of the Albumen-NPs device is due to Charge trapping/de-trapping conduction effect. For the Albumen-Au NPs device by spin-coating, the conductance of ON state was different from that of OFF state by a factor of 1 × 104 at 0.1 V reading voltage. And, the Albumen-Au NPs device showed higher stability and reliability in characteristics of retention and endurance measurement. The switching cycles could be up to 1500 times when the writing and erasing operations were performed by pulse signals of -1 V/ 10 ms and 2.5 V/ 10 ms, respectively, and the ON and OFF sate were stable for 1 × 106 s with 0.1 V reading voltage. In the other hand, the Albumen-QDs devices by contact-printing have the similar memory properties to the Albumen-Au NPs devices. Moreover, the QDs film formed by contact-printing method improves the yield rate when the cell size of the Albumen-QDs device is minimized. The yield rate reaches 96% when the device area is 0.64 mm2.

    Chinese Abstract I English Abstract III Acknowledgements V Contents VI Table captions IX Figure captions XI Chapter1 Introduction 1 1.1 Resistive Random Access Memory (RRAM) Technologies 1 1.2 Polymer RRAM 2 1.3 Motivation 4 References-Chapter1 7 Chapter 2 Physics of RRAM 11 2.1 Conduction mechanism of RRAM 11 2.2 Switching mechanisms of polymer RRAM 13 2.2.1 Filamentary conduction 13 2.2.2 Space charges and traps 5 2.2.3 Charge transfer effects 16 References-Chapter2 23 Chapter 3 Experimental processes and measurements 25 3.1 The materials in the experiments 25 3.2 Fabrication process 26 3.2.1 Preparation of the polymer and NPs solutions 26 3.2.2 Deposition of ITO or Al as bottom electrode 27 3.2.3 Deposition of polymer and NPs films 27 3.2.4 Deposition of Al as top electrode 28 3.3 Measurement of the devices 29 3.3.1 Surface morphology of polymer and NPs films 29 3.3.2 Electrical and Memory characteristics of the devices 29 Chapter 4 Investigation of metal/insulator/metal structure 38 4.1 Electrical characteristics of Chicken Albumen memory 38 4.2 Switching mechanisms of Chicken Albumen memory 39 4.2.1 Conductive mechanisms for on/off state 39 4.2.2 Switching mechanism 41 4.3 Memory property of Chicken Albumen memory 43 4.4 Chicken Albumen memory on the flexible substrate 44 4.5 Summary 46 References-Chapter4 62 Chapter 5 Investigation of Chicken Albumen Memory using Nanoparticles 64 5.1 Memory by Au-NPs or CdSe/ZnS QDs embedded in Chicken Albumen film 64 5.1.1 Bistable behaviors 64 5.1.1 Comparison of Chicken Albumen memory with different nanoparticles by the spin-coating method 65 5.2 Au-NPs film as the best NPs film of Chicken Albumen memory by spin-coating method 67 5.2.1 Switching mechanism 67 5.2.2 Memory property 68 5.3 Improvement of the yield rate by contact-printing method 69 5.3.1 Motivation 69 5.3.2 Different cell-size in the 5 × 5 cross-bar structure 70 5.3.3 Comparison of the memory property and the yield rate by spin-coating and contact-printing methods 70 5.4 Summary 72 References-Chapter5 91 Chapter 6 Conclusion and Future work 92 6.1 Conclusion 92 6.2 Future work 93

    References-Chapter 1
    [1]Q. Ling, D. Liaw, C. Zhu, D. S. Chan, E. Kang, K. Neoh, “Polymer electronic memories: Materials, devices and mechanisms,” Polymer, vol. 33, issue 10, pp. 917–978, Oct. 2008.
    [2]Waser R., “Nanoelectronics and information technology: advanced electronic materials and novel devices. 2nd ed.,” Weinheim: Wiley-VCH; 2005
    [3]R. F. Service, “Next-generation technology hits an early midlife crisis,” Science, vol. 302, pp. 556-557, Oct. 2003.
    [4]R. Compano, “Trends in nanoelectronics,” Nanotechnol., vol. 12, no. 2, pp. 85-88, Apr. 2001.
    [5]L.E. Yu, S.Kim, M. K. Ryu, S. Y.Choi, and Y. K.Choi, “Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 331, Apr. 2008.
    [6]The International Technology Roadmap for Semiconductors (ERD_ERM_2010 FINAL Report Memory Assessment ITRS), p. 19.
    [7]I. G. Baek, D. C. Kim, M.J. Lee, H. -J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, J. T. Moon, B. I. Ryu, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” Int. Electron Devices Meet., pp. 750-753, Dec. 2005.
    [8]Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F. S. Yeh, T. Y. Tseng, “Influence of Nanocrystals on Resistive Switching Characteristic in Binary Metal Oxides Memory Devices,” Electrochem. Solid-State Lett., vol. 14, issue 3, pp. 135-138, 2011.
    [9]S. Seo, M. J. Lesse, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5655–5657, Dec. 2004.
    [10]L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choi, “Structure effects on resistive switching of Al/TiOx/Al devices for RRAM applications,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 331–333, Apr. 2008.
    [11]A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. D. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, “Non-volatile resistive switching for advanced memory applications,” Int. Electron Devices Meet., pp. 746–749. , Dec. 2005.
    [12]A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, no. 1, pp. 139–141, Jul. 2000.
    [13]S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett., vol. 76, no. 19, pp. 2749–2751, Mar. 2000.
    [14]S. F. Karg, G. I. Meijer, J. G. Bednorz, C. T. Rettner, A. G. Schrott, E. A. Joseph, C. H. Lam, M. Janousch, U. Staub, F. La Mattina, S. F. Alvarado, D. Widmer, R. Stutz, U. Drechsler, D. Caimi, “Transition-metal-oxide-based resistance-change memories,” IBM J. Res and Dev, vol. 52, no. 4, pp. 481-492, Jul. 2008.
    [15]A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Colossal Electro-Resistance Memory Effect at Metal/La2CuO4 Interfaces,” Jpn. J. Appl. Phys., vol 44, pp. 1241-1243, Sep. 2005.
    [16]B. Mukherjee and A. J. Pal, “Multilevel conductance and memory in ultrathin organic films,” Appl. Phys. Lett., vol. 85, pp. 2116-2118, Jul. 2004.
    [17]L. Ma, S. Pyo, J. Ouyang, Q. Xu, and Y. Yang, “Nonvolatile electrical bistability of organic/metal-nanocluster/organic system,” Appl. Phys. Lett., vol 82, pp. 1419-1421, Jan. 2003.
    [18]T. Oka ,and N. Nagaosa, “Interfaces of Correlated Electron Systems: Proposed Mechanism for Colossal Electroresistance,” Phys. Rev. Lett., vol 95, pp. 266403-266406, Dec. 2005.
    [19]S. Kim, and Y. K. Choi, “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3049-3054, Dec. 2009.
    [20]T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3,” Appl. Phys. Lett., vol. 86, no. 1, pp. 012107-012109, Jan. 2005.
    [21]A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 85, no. 18, pp. 4073–4075, Nov. 2004.
    [22]M. Mitkova, Y. Wang, and P. Boolchand, “Dual chemical role of Ag as an additive in chalcogenide glasses,” Phys. Rev. Lett., vol. 83, no. 19, pp. 3848–3851, Nov. 1999.
    [23]A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, and Y. Tokura, “Colossal electroresistance of a Pr0.7Ca0.3MnO3 thin film at room temperature,” Phys. Rev. B, vol. 70, no. 22, pp. 224403-224406, Dec. 2004.
    [24]C. H. Tu, Y. S. Lai, and D. L. Kwon, “Memory Effect in the Current–Voltage Characteristic of 8-Hydroquinoline Aluminum Salt Films,” IEEE Electron Dev. Lett., Vol. 27, no. 5, pp. 354-356, May 2006.
    [25]J. Kevorkian, M. M. Labes, D. C. Larson, and D. C. Wu, “Bistable switching in organic thin films,” Discuss. Faraday Soc., vol. 51, pp.139-143, 1971.
    [26]L. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., Vol. 80, no. 16, pp. 2997-2999, Feb. 2002.
    [27]J. Wu, L. P. Ma, and Y. Yang, “Single-band Hubbard model for the transport properties in bistable organic/metal nanoparticle/organic devices,” Phys. Rev. B, vol. 69, no. 11, pp.115321-115328, Mar. 2004.
    [28]L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett., vol. 84, no. 4, pp. 607-609, Jan. 2004.
    [29]P. Y. Lai, “Investigation and characterization of Au nanoparticles incorporated polymer thin films for nonvolatile resistance random access memories,” Department of Materials Science and Engineering, p. 5, 2010.
    [30]Y. S. Lai, C. H. Tu, D. L. Kwong, J. S. Chen, “Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 87, no. 12, pp. 122101-122103, Sep. 2005.
    [31]W. L. Kwan, B. Lei, Y. Shao, S. V. Prikhodko, Noah Bodzin, and Y. Yang, “Direct observation of localized conduction pathways in photocross-linkable polymer memory,” J. Appl. Phys., vol. 105, no. 12, pp. 124516-124520, Jun. 2009.
    [32]S. Baek, D. Lee, J. Kim, S. H. Hong, O. Kim, and M. Ree, “Novel Digital Nonvolatile Memory Devices Based on Semiconducting Polymer Thin Films,” Adv. Funct. Mater., Vol. 17, no. 15, pp. 2637–2644, Oct. 2007.
    [33]A. Prakash, J. Ouyang, J. L. Lin, and Y. Yang, “Polymer memory device based on conjugated polymer and gold nanoparticles,” J. Appl. Phys., vol. 100, no. 5, pp. 054309-054313, Sep. 2006.
    [34]K. S. Yook , S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, and J. Jang, “Organic bistable memory device using MoO3 nanocrystal as a charge trapping center,” Org. Electr., vol. 10, no. 1, pp. 48–52, Feb. 2009.
    [35]P. F. Lee, and J. Y. Dai, “Memory effect of an organic based trilayer structure with Au nanocrystals in an insulating polymer matrix,” Nanotechnol., vol. 21, no. 29, pp. 295706-295710, Jul. 2010.
    [36]S. H. Kang, C. K. Kumar, Z. Lee, V. Radmilovic, and E. T. Kim, “Effects of surface ligands on the charge memory characteristics of CdSe/ZnS nanocrystals in TiO2 thin film,” Appl. Phys. Lett., vol. 95, no. 18, pp. 183111-183113, Nov. 2009.

    References-Chapter 2
    [1]Tyczkowski J., “Bistable switching in plasma-polymerized acrylonitrile films,” Thin Solid Films, vol. 199, no. 2, pp. 335-342, Apr. 1991.
    [2]D. Adler, “Amorphous semiconductors,” CRC Press (Cleveland, OH), 1971.
    [3]D. A. Seanor, “Electrical properties of polymers,” Academic Press (New York), 1982.
    [4]H. S. Nalwa, “Ferroelectric Polymers: Chemistry: Physics, and Applications,” CRC Press (New York), pp. 1–62., 1995.
    [5]Q. Ling, D. Liaw, C. Zhu, D. S. Chan, E. Kang, and K. Neoh, “Polymer electronic memories: Materials, devices and mechanisms,” Polymer, vol. 33, no. 10, pp. 917–978, Oct. 2008.
    [6]S. M. Sze, “Physics of semiconductor devices”, second ed., Wiley (New York), p. 403, 1981.
    [7]P. Y. Lai, “Investigation and characterization of Au nanoparticles incorporated polymer thin films for nonvolatile resistance random access memories,” Department of Materials Science and Engineering, p. 5, 2010.
    [8]J. Kevorkian, M. M. Labes, D. C. Larson, and D. C. Wu, “Bistable switching in organic thin films,” Discuss. Faraday Soc., vol. 51, pp.139-143, 1971.
    [9]H. K. Henisch, and W. R. Smith, “Switching in organic polymer films,” Appl. Phys. Lett., vol. 24, no. 12, pp. 589-591, Jun. 1974.
    [10]T. Kaplan, and D. Adler D, “Electrothermal switching in amorphous semiconductors,” J. Non-Cryst. Solids, vol. 8–10, pp. 538-543, Jun. 1972.
    [11]W. L. Kwan, B. Lei, Y. Shao, S. V. Prikhodko, N. Bodzin, and Y. Yang, “Direct observation of localized conduction pathways in photocross-linkable polymer memory,” J. Appl. Phys., vol. 105, no. 12,pp. 124516-124520, Jun. 2009.
    [12]C. T. Lee, L. Z. Yu, and H. C. Chen, “Memory bistable mechanisms of organic memory devices,” Appl. Phys. Lett., vol. 97, no. 4, pp. 043301-043303, Jul. 2010.
    [13]Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, “Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 87, no. 12, pp. 122101-122103, Sep. 2005.
    [14]D. M. Taylor, “Space charges and traps in polymer electronics,” IEEE Trans. Dielect. Electr. Insulation, vol. 13, no. 5, pp. 1063-1073, Oct. 2006.
    [15]L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic materials and thin-film structures for cross-point memory cells based on tapping in metallic nanoparticles,” Adv. Funct. Mater., vol. 15, no. 12, pp. 1933-1939, Dec. 2005.
    [16]H. T. Lin, Z. Pei, and Y. J. Chan, “Carrier transport mechanism in a nanoparticle- incorporated organic bistable memory device” IEEE Electron Device Lett., vol. 28, no. 7, pp. 569-571, Jul. 2007.
    [17]R. S. Potember, T. O. Poehler, and D. O. Cowan, “Electrical switching and memory phenomena in Cu-TCNQ thin films” Appl. Phys. Lett., vol. 34, no. 6, pp. 405-411, Mar. 1979.
    [18]J. P. Farges, “Organic conductors : fundamentals and applications”, Marcel Dekker (New York), 1994.

    References-Chapter 4
    [1]Y. C. Chen, Y. K. Su, C. Y. Huang, H. C. Yu, C. Y. Cheng, T. H. Chang, “Bistable Resistive Switching Characteristics ofPoly(2-hydroxyethyl methacrylate) Thin Film Memory Devices,” Appl. Phys. Express, vol. 4, issue 5, pp. 054204, May 2011.
    [2]Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, J. Chen, “Resistive switching memory effect of ZrO2 films with Zr+ implanted,” Appl. Phys. Lett., vol. 92, issue 1, pp. 012117, Jan. 2008.
    [3]F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett., vol. 96, issue 16, pp. 163505, Apr. 2010.
    [4]X. Chen, G. Wu, D. Bao, “Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications,” Appl. Phys. Lett., vol. 93, issue 9, pp. 093501, Sep. 2008.
    [5]X. D. Zhuang, Y. Chen, G. Liu, P. P. Li, C. X. Zhu, E. T. Kang, K. G. Noeh, B. Zhang, J. H. Zhu, and Y. X. Li, “Conjugated-polymer-functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect,” Adv. Mater., vol. 22, no. 15, pp. 1731-1735, Apr. 2010.
    [6]W. J. Joo, T. L. Choi, K. H. Lee, Y., “Study on Threshold Behavior of Operation Voltage in Metal Filament-Based Polymer Memory,” Chung, J. Phys. Chem. B, vol. 111, issue 27, pp. 7756-7760, Jul. 2007.
    [7]B. Lei, W. L. Kwan, Y. Shao, Y. Yang, “Statistical Characterization of the Memory Effect in Polyfluorene Based Non-volatile Resistive Memory Devices,” Org. Electron., vol. 10, issue 6, pp. 1048-1053, Sep. 2009.
    [8]L. F. Pender, R. J. Fleming, J., “Memory switching in glow discharge polymerized thin films,” Appl. Phys., vol. 46, issue 8, pp. 3426-3431, 1975.
    [9]S. Kim, O. Yarimaga, S. J. Choi, Y. K. Choi, “Highly durable and flexible memory based on resistance switching,” Solid State Electron., vol. 54, issue 4, pp. 392-396, Apr. 2010.
    [10]Y. T. Tsai, T. C. Chang, W. L. Huang, C. W. Huang, Y. E. Syu, S. C. Chen, S. M. Sze, M. J. Tsai, T. Y. Tseng, “Investigation for coexistence of dual resistive switching characteristics in DyMn2O5 memory devices,” Appl. Phys. Lett., vol. 99, issue 9, pp. 092106, Aug. 2011.
    [11]H. S. Mansur, C. M. Sadahira, A. N. Souza, A. A. P. Mansur, “FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde,” Mater. Sci. Eng. C, vol. 28, issue 4, pp. 539-548, May 2008.
    [12]G. P. Sheng, H. Q. Yu, Z. Yu, “Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila,” Appl. Microbiol. Biotechnol., vol. 67, issue 1, pp. 125-130, Apr. 2005.
    [13]C. M. Castilla, M.V. L. Ramo, F. C. Marin, “Changes in surface chemistry of activated carbons by wet oxidation,” Carbon, vol.38, issue 14, pp. 1995-2001, 2000.
    [14]V. Tangpasuthadol, N. Pongchaisirikul, V. P. Hoven, “Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption,” Carbohyd. Res., vol. 338, issue 9, pp. 937-942, Apr. 2003.
    [15]H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, S. Y. Choi, “Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications,” Nano Lett., vol. 10, issue 11, pp. 4381-4386, Nov. 2010.
    [16]K. S. Yook, J. Y. Lee, S. H. Kim, J. Jang, “Transparent organic bistable memory device with pure organic active material and Al/indium tin oxide electrode,” Appl. Phys. Lett., vol. 92, issue 22, pp. 223305, Jun. 2008.
    [17]M. Colle, M. Buchel, D. M. d. Leeuw, “Switching and filamentary conduction in non-volatile organic memories,” Org. Electron. vol. 7, issue 5, pp. 305-312, Oct. 2006.
    [18]G. Liu, Q. D. Ling, E. Y. H. Teo, C. X. Zhu, D. S. H. Chan, K. G. Neoh, E. T. Kang, “Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)?Carbon Nanotube Composite Films,” Amer. Chem. Soc. Nano., vol. 3, issue 7, pp. 1929-1937, Jul. 2009.
    [19]B. Cho, T. W. Kim, M. Choe, G. Wang, S. Song, T. Lee, “Unipolar nonvolatile memory devices with composites of poly(9-vinylcarbazole) and titanium dioxide nanoparticles,” Org. Electron., vol. 10, issue 3, pp. 473-477, May 2009.
    [20]G. Dearnaley, A.M. Stoneham, D.V. Morgan, Rep., “Electrical phenomena in amorphous oxide films,” Prog. Phys., vol. 33, issue 11, pp. 1129-&, 1970.
    [21]G. Dearnaley, D.V. Morgan, A.M. Stoneham, “A model for filament growth and switching in amorphous oxide films,” J. Non-Cryst. Solids, vol. 4, pp. 593-612, 1970.

    References-Chapter 5
    [1]L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements,” Appl. Phys. Lett., vol. 84, no. 4, pp. 607–609, Jan. 2004.
    [2]J. G. Simmons and R. R. Verderber, “New conduction and reversible memory phenomena in thin insulating films,” Proc. R. Soc. Lond. A, Math. Phys. Sci., vol. 301, no. 1464, pp. 77–102, Oct. 1967.

    下載圖示 校內:2018-01-23公開
    校外:2018-01-23公開
    QR CODE