| 研究生: |
黃子凌 Huang, Tzu-Ling |
|---|---|
| 論文名稱: |
在菸草中表現耐熱古細菌Sulfolobus solfataricus的β-葡萄糖苷酶基因 Expression of β-glucosidase gene from thermophilic archaeon Sulfolobus solfataricus in tabacco |
| 指導教授: |
張清俊
Chang, Ching-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 生質能源 、Sulfolobus solfataricus 、β-glucosidase |
| 外文關鍵詞: | Biofuel, Sulfolobus solfataricus, β-glucosidase |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物質為含量豐富的可再生資源,可以透過生物轉化的方式生產生物能源和生物材料。木質纖維素生物質經生物轉化方式生成生質能源需要三個過程,預處理、酵素水解和發酵,然而水解酶的成本是商業生產生物燃料的主要障礙之一。目前植物已被當成生物反應器用來生產各種蛋白質,因為其具有的低成本的潛能,其中也包含用來生產生物燃料的纖維素水解酶。Sulfolobus solfataricus是一種嗜熱性且嗜酸性的古細菌,生長於硫充足的環境下,可以在80℃左右的高溫和低pH約2-4的條件下生長。在本研究中,我們在煙草中表達來自S. solfataricus的β-葡萄糖苷酶基因,並與細菌表達的重組酶進行比較。由rbcS啟動子驅動3個含有β-葡萄糖苷酶基因得植物細胞核表達載體,並且重組蛋白分別累積在葉綠體,內質網和液泡中積累。並且從中挑選出 β-glucosidase 活性表現高的轉基因植物,期望能有潛力解決工業上生產問題。
Biomass is an abundant renewable resource can product bioenergy and biomaterials through biotransformation. The biotransformation of lignocellulosic biomass into biofuels usually requires three processes, pretreatment, enzymatic hydration and fermentation. The cost of hydrolytic enzymes is one of major limiting factors in the commercial production of biofuel. Plants have been used as bioreactor to produce various kinds of proteins including hydrolytic enzymes used in biofuel production because of the potentially low cost. Sulfolobus solfataricus is a thermoacidophilic archaeon, which can grow optimally at high temperature around 80℃ and low pH about 2-4 levels under sufficient sulfur environments. In the present study, we overexpressed the β-glucosidase gene from S. solfataricus in transgenic tobacco and compared with that of bacteria-expressed recombinant enzyme. Three plant nuclear expression vectors were constructed with the expression of β-glucosidase gene driven by rbcS promoter, and the recombinant proteins were accumulated in chloroplasts, endoplasmic reticulum and vacuoles, respectively. Agrobacteria-mediated method was used to generate transgenic tobacco lines. The plant-expressed β-glucosidase with accumulation in chloroplasts showed higher activity than that of the ER and vacuole. The transgenic plants showed no obvious defect in growth and developmental.
吳佩諭,利用似轉錄激活因子蛋白核酸酶(TALEN)技術對植物粒線體nad1基因進行編輯,國立成功大學生物科技研究所碩士論文,2017。
胡曉菁,本土木黴菌之篩選及其纖維分解酵素之特性分析與應用研究,朝陽科技大學生物技術研究所碩士論文,2007。
涂晉敏,應用創傷弧菌蘭螢光蛋白於植物科學的研究,國立成功大學熱帶植物科學研究所碩士論文,2014。
郭家宏,纖維素之溶解對其酵素醣化及發酵應用之研究,國立臺灣科技大學化學工程系博士學位論文,2009。
陳怡寬,利用細胞穿透胜肽運送DNA進入葉綠體,國立成功大學生物科技研究所碩士論文,2013。
黃品升,利用職務熱休克蛋白HSP101來提升外源蛋白質轉譯能力之研究國立成功大學生物科技研究所碩士論文,2006。
蘇源霖,轉殖似轉錄激活因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA序列之研究,國立成功大學生物科技研究所碩士論文,2016。
Agrawal, P., Verma, D. and Daniell, H. Expression of Trichoderma reesei b-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS ONE 6, e29302, 2011.
Aguilar, C. F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M. and Pearl, L. H. Crystal structure of the β-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. Journal of Molecular Biology 271, 789-802, 1997.
Ballesteros, I., Negro, M. J., Oliva, J. M., Cabañas, A., Manzanares, P. and Ballesteros, M. Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology 129, 496-508, 2006.
Bals, B. and Dale, B.E. Economic comparison of multiple techniques forrecovering leaf protein in biomass processing. Biotechnology and Bioengineering 108, 530-537, 2011.
Borkhardt, B., Harholt, J., Ulvskov, P., Ahring, B. K., Jørgensen, B. and Brinch‐Pedersen, H. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo‐xylanases. Plant Biotechnology Journal 8, 363-374, 2010.
Brock, T. D., Brock, K. M., Belly, R. T. and Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archives of Microbiology 84, 54-68, 1972.
Brunecky, R., Selig, M. J., Vinzant, T. B., Himmel, M. E., Lee, D., Blaylock, M. J. and Decker, S. R. In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnology for Biofuels 4, 1-10, 2011.
Buanafina, M.M.d.O., Dalton, S., Langdon, T., Timms-Taravella, E., Shearer, E.A. and Morris, P. Functional co-expression of a fungal ferulic acid esterase and a b-1,4 endoxylanase in Festuca arundinacea (tall fescue) modifies post-harvest cell wall deconstruction. Planta 242, 97-111, 2015.
Buranov, A. U. and Mazza, G. Lignin in straw of herbaceous crops. Industrial Crops and Products 28, 237-259, 2008.
Chattopadhyay, S., Srivastava, A. K. and Bisaria, V. S. Production of phytochemicals in plant cell bioreactors. In Plant Biotechnology and Molecular Markers 7, 117-128, 2004.
Cho, E. J., Jung, S., Kim, H. J., Lee, Y. G., Nam, K. C., Lee, H. J. and Bae, H. J. Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chemical Communications 48, 886-888, 2012.
Dai, Z., Hooker, B. S., Anderson, D. B. and Thomas, S. R. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Research 9, 43-54, 2000.
Dikshit, R. and Tallapragada, P. Partial Purification and Characterization of β-glucosidase from Monascus sanguineus. Brazilian Archives of Biology and Technology 58, 185-191, 2015.
Espinoza-Sánchez, E. A., Torres-Castillo, J. A., Rascón-Cruz, Q., Zavala-García, F. and Sinagawa-García, S. R. Production and characterization of fungal β-glucosidase and bacterial cellulases by tobacco chloroplast transformation. Plant Biotechnology Reports 10, 61-73, 2016.
Gibson, L. J. The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface 9, 2749-2766, 2012.
Giddings, G., Allison, G., Brooks, D. and Carter, A. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology 18, 1151-1155, 2000.
Gray, B. N., Yang, H., Ahner, B. A. and Hanson, M. R. An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts. Plant Molecular Biology 76, 345-355, 2011.
Hahn, S., Giritch, A., Bartels, D., Bortesi, L. and Gleba, Y. A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. Plant Biotechnology Journal 13, 708-716, 2014.
Hanson, M.R., Gray, B.N. and Ahner, B.A. Chloroplast transformation for engineering of photosynthesis. Journal of Experimental Botany 64, 731-742, 2013.
Harrison, M. D., Geijskes, J., Coleman, H. D., Shand, K., Kinkema, M., Palupe, A., Hassall, R., Sainz, M., Lloyd, R., Miles, S. and Dale, J. L. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnology Journal 9, 884-896, 2011.
Harrison, M., Zhang, Z.Y., Shand, K., Chong, B. F., Nichols, J., Oeller, P., O’Hara, I., Doherty., W. O. S. and Dale, J. L. The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse. Biotechnology for Biofuels 7, 1-14, 2014.
Hele, T. and Priit, V. Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnology for Biofuels 6, 1-13, 2013.
Hendriks, A. T. W. M., and Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100, 10-18, 2009.
Herbers, K. and Sonnewald, U. Production of new/modified proteins in transgenic plants. Current Opinion in Biotechnology 10, 163-168, 1999.
Herbers, K., Wilke, I. and Sonnewald, U. A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Nature Biotechnology 13, 63-66, 1995.
Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. and Foust, T. D. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804-807, 2007.
Houghton, J. T., Ding, Y. D. J. G., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell. and Johnson, C. A. The carboncycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific basis. The Press Syndicate of the University of Cambridge, England, 183-189, 2001.
Hu, F. and Ragauskas, A. Pretreatment and lignocellulosic chemistry. Bioenergy Research 5, 1043-1066, 2012.
Huang, F. C., Klaus, S. M., Herz, S., Zou, Z., Koop, H. U., and Golds, T. J. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Molecular Genetics and Genomics 268, 19-27, 2002.
Huang, Y.W., Krauss, G., Cottaz, S., Driguez, H. and Lipps, G. A highly acidstable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochemical Journal 385, 581-588, 2005.
Jang, I. C., Choi, W. B., Lee, K. H., Song, S. I., Nahm, B. H. and Kim, J. K. High-level and ubiquitous expression of the rice cytochromec gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiology 129, 1473-1481, 2002.
Jiang, X. R., Zhou, X. Y., Jiang, W. Y., Gao, X. R. and Li, W. L. Expressions of thermostable bacterial cellulases in tobacco plant. Biotechnology Letters 33, 1797-1803, 2011.
Jiang, X., Zhou, X., Liu, Q., Zheng, L., Yu, N. and Li, W. Expression of Acidothermus cellulolyticus thermostable cellulases in tobacco and rice plants. Biotechnology and Biotechnological Equipment 31, 23-28, 2017.
Jung, S., Kim, S., Bae, H., Lim, H. S. and Bae, H. J. Expression of thermostable bacterial β-glucosidase (BglB) in transgenic tobacco plants. Bioresource Technology 101, 7144-7150, 2010.
Kim, J.Y., Kavas, M., Fouad, W.M., Nong, G., Preston, J.F. and Altpeter, F. Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production. Plant Molecular Biology 76, 357-369, 2011.
Kim, S., Lee, D. S., Choi, I. S., Ahn, S. J., Kim, Y. H. and Bae, H. J. Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Research 19, 489-497, 2010.
Klose, H., Roder, J., Girfoglio, M., Fischer, R. and Commandeur, U. Hyperthermophilic endoglucanase for in planta lignocellulose conversion. Biotechnology for Biofuels 5, 1-9, 2012.
Kosinkova, J., Doshi, A., Maire, J., Ristovski, Z., Brown, R. and Rainey, T. J. Measuring the regional availability of biomass for biofuels and the potential for microalgae. Renewable and Sustainable Energy Reviews 49, 1271-1285, 2015.
Li, Q.Z., Song, J., Peng, S.B., Wang, J.P., Qu, G.Z., Sederoff, R.R. and Chiang, V.L. Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnology Journal 12, 1174-1192, 2014.
Mansfield, S. D., Mooney, C. and Saddler, J. N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress 15, 804-816, 1999.
Martin, M. A. First generation biofuels compete. New Biotechnology 27, 596-608, 2010.
Mei, C., Park, S. H., Sabzikar, R., Callista Ransom, C. Q. and Sticklen, M. Green tissue‐specific production of a microbial endo‐cellulase in maize (Zea mays L.) endoplasmic‐reticulum and mitochondria converts cellulose into fermentable sugars. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology 84, 689-695, 2009.
Michael, M. C., Albert, L. L., David, R. L. The foundations of biochemistry. Lehninger principles of biochemistry. Worth Publishers, New York, 306-308, 2000.
Montalvo‐Rodriguez, R., Haseltine, C., Huess‐LaRossa, K., Clemente, T., Soto, J., Staswick, P., & Blum, P. Autohydrolysis of plant polysaccharides using transgenic hyperthermophilic enzymes. Biotechnology and Bioengineering 70, 151-159, 2000.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96, 673-686, 2005.
Naik, S. N., Goud, V. V., Rout, P. K., and Dalai, A. K. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews 14, 578-597,2010.
Nigorikawa, M., Watanabe, A., Furukawa, K., Sonoki, T. and Ito, Y. Enhanced saccharification of rice straw by overexpression of rice exoglucanase. Rice 5, 1-7, 2012.
Park, S. H., Ong, R. G. and Sticklen, M. Strategies for the production of cell wall‐deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. Plant Biotechnology Journal 14, 1329-1344, 2016.
Park, S.H., Yi, N., Kim, Y.S., Jeong, M.H., Bang, S.W., Choi, Y.D. and Kim, J.K. Analysis of five novel putative constitutive gene promoters in transgenic rice plants. Journal of Experimental Botany 61, 2459-2467, 2010.
Perlack, R. D., Eaton, L. M., Turhollow Jr, A. F., Langholtz, M. H., Brandt, C. C., Downing, M. E., Graham, R. L., Wright, L. L., Kavkewitz, J. M., Shamey, A. M., Nelson, R. G. Stokes., B. J., Rooney, W. L., Muth Jr, D. J., Hess, R., Abodeely, J. M., Hellwinckel, C., Ugarte, D. D. L. T., Yoder, D.C., Lyon, J.P., Rials, T. G., Volk, T. A., Buchholz, T. S., Abrahamson, L. P., Anex, R. P., Voigt, T. B., Berguson, W., Riemenschneider, D. E., Karlen, D., Johnson, J. M. F., Mitchell, R. B., Vogel, K. P., Richard Jr., E. P., Tatarko, J., Wagne, L. E., Skog, K. E., Lebow, P. K., Dykstra, D. P., Buford, M. A., Miles, P. D., Scot, A., Perdue, J. H., Rummer, R. B., Barbour, J., Stanturf, J. A., McKeever, D. B., Zalesny Jr, R. S., Gee, E. A., Cassidy, P. D. and Lightle, D. Biomass in current and projected energy consumption. US billion-ton update: biomass supply for a bioenergy and bioproducts industry. United States Department of Energy, America, 101-108 ,2011.
Que, Q.D., Chilton, M.-D.M., de Fontes, C.M., He, C.K., Nuccio, M., Zhu, T.,Wu, Y.X., Chen, J. S. and Shi, L. Trait stacking in transgenic crops: challenges and opportunities. Genetically Modified Crops and Foods 1, 220-229, 2010.
Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., William, J., Frederick, Jr., Jason, P. H., David, J. L., Charles, L.L., Murphy, R., Templer, R., Tschaplinski, T. and Mielenz, J. R. The path forward for biofuels and biomaterials. Science 311, 484-489, 2006.
Rani, S. J. and Usha, R. Transgenic plants: Types, benefits, public concerns and future. Journal of Pharmacy Research 6, 879-883, 2013.
Rubin, E. M. Genomics of cellulosic biofuels. Nature 454, 841-845, 2008.
Ruf, S., Karcher, D. and Bock, R. Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences of the United States of America 104, 6998-7002, 2007.
Sajc, L., Grubisic, D. and Vunjak-Novakovic, G. Bioreactors for plant engineering: an outlook for further research. Biochemical Engineering Journal 4, 89-99, 2000.
Sarkar, N., Ghosh, S. K., Bannerjee, S., and Aikat, K. Bioethanol production from agricultural wastes: an overview. Renewable Energy 371, 19-27, 2012.
Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C. and Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology 127, 500-507, 2013.
Sørensen, A., Lübeck, P. S., Lübeck, M., Teller, P. J. and Ahring, B. K. β-Glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass. Canadian Journal of Microbiology 57, 638-650, 2011.
Taiz, L. and Zeiger, E. Cell walls: structure, biogenesis, and expansion. Plant Physiology 15, 409-443, 1998.
Taylor II, L. E., Dai, Z., Decker, S. R., Brunecky, R., Adney, W. S., Ding, S. Y. and Himmel, M. E. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends in Biotechnology 26, 413-424, 2008.
Tucker, M.P., Mohagheghi, A., Grohmann, K. and Himmel, M.E. Ultrathermostable cellulases from Acidothermus cellulolyticus: comparison of temperature optima with previously reported cellulases. Nature Biotechnology 7, 817-820,1989.
Uihlein, A. and Schebek, L. Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass and Bioenergy 33, 793-802.
Vasudevan, P., Sharma, S. and Kumar, A. Liquid fuel from biomass: an overview. Journal of Scientific and Industrial Research 64, 822-832, 2005.
Verma, D., Kanagaraj, A., Jin, S.X., Singh, N.D., Kolattukudy, P.E. and Daniell, H. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnology Journal 8, 332-350, 2010.
Wood, T. M., McCRAE, S. I. and Macfarlane, C. C. The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochemical Journal 189, 51-65, 1980.
Xue, R. and Woodley, J. M. Process technology for multi-enzymatic reaction systems. Bioresource Technology 115, 183-195, 2002.
Zhang, Q., Zhang, W., Lin, C., Xu, X. and Shen, Z. Expression of an Acidothermus cellulolyticus endoglucanase in transgenic rice seeds. Protein Expression and Purification 82, 279-283, 2012.
Zhang, Y. H. P. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology 35, 367-375, 2008.
Zheng-quan, D. X. C. H. and Wei, C. L. Y. Y. Y. Recent progress on plant bioreactor expressing pharmaceutical proteins. China Biotechnology 28, 135-143, 2008.
Ziegelhoffer, T., Raasch, J. A. and Austin‐Phillips, S. Expression of Acidothermus cellulolyticus E1 endo‐β‐1, 4‐glucanase catalytic domain in transplastomic tobacco. Plant Biotechnology Journal 7, 527-536, 2009.
Ziegelhoffer, T., Will, J. and Austin-Phillips, S. Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Molecular Breeding, 5, 309-318, 1999.
Zillig, W., Stetter, K. O., Wunderl, S., Schulz, W., Priess, H. and Scholz, I. The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Archives of Microbiology, 125, 259-269, 1980.