簡易檢索 / 詳目顯示

研究生: 林彰廷
Lin, Chang-Ting
論文名稱: 多噴頭效應在氣助式噴嘴中之霧化特性研究
Effects of Multiple Orifices on Atomization Performance of an Air-Assist Atomizer
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 128
中文關鍵詞: 多孔噴頭側向噴流縮孔霧化氣助式噴嘴
外文關鍵詞: air-assist atomizer, atomization, contraction, side jet, multiple orifices
相關次數: 點閱:129下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討不同噴嘴霧化機構對氣助式霧化器霧化特性之影響,基本上分為直孔型、縮孔型、擴孔型等三種噴嘴型式(分別以CK5-S、CK5-C、CK5-E表示),探討其霧化特性,並研究在噴嘴出口加側向噴流或多孔噴頭所產生之霧化效應,噴霧之粒度分佈以Malvern公司雷射繞射式RT-Sizer粒徑分析儀量測。
    研究結果顯示,縮孔型噴頭之奇點效應有助於噴霧平均粒徑(SMD)與噴霧粒度比(SR)的降低。例如在水壓5.2kg/cm2,氣壓6kg/cm2下,CK5-S單孔霧化器所產生噴霧之SMD為33.20μm,SR值為8.87;而使用CK5-C單孔霧化器則可大幅縮減SMD至15.72μm,SR值亦可降至3.41,霧化效果顯著提昇。噴嘴出口加側向噴流更可進一步提昇噴霧品質,例如在水壓5.2kg/cm2,氣壓6kg/cm2下,CK5-C霧化器加入9LPM之單一側向噴流後,SMD即可降至13.29μm,SR值更只有2.74,且此時之氣液質量比僅為0.618,顯示噴霧不僅具有顆粒細微及粒徑大小一致之優點,同時較小的氣液質量比也降低了操作成本,有利於工程上之應用。研究結果亦顯示,少量之側向噴流即可大幅提昇霧化效能(Ea),代表側向噴流為控制噴霧之細微化及噴霧粒度範圍窄化之控制機制。對於多孔噴頭效應之研究亦發現,縮孔型多孔噴頭具有比直孔型多孔噴頭優良之霧化特性。就CK5-C單孔霧化器與各式縮孔型多孔噴頭之霧化特性而言,於相同的操作壓力,縮孔型多孔噴頭能夠在大幅提高霧化量下,產生與CK5-C單孔霧化器相同之霧化特性。例如在水壓5.2kg/cm2,氣壓6kg/cm2時,使用Ø0.8mm六孔縮孔噴頭之CK5型霧化器,其水流率可達16.20LPH,SMD與SR值則分別為16.50μm和3.06,氣液質量比僅為0.544,顯示縮孔型多孔噴頭可在大量之噴霧量下,達到良好的霧化特性,故為一產生大量噴霧之控制機制。

    The effects of different atomization mechanisms on the atomization performance of an air-assist atomizer are investigated in this research program. The atomizers with straight, contraction and expansion configurations are designated by CK5-S, CK5-C and CK5-E, respectively. Nozzles with side jets and multiple orifices are also characterized. The particle size of the spray is measured by Malvern RT-Sizer. The measurement is based on the diffraction pattern scattered by the spray droplets.
    Results show that the singularity configuration of the contraction type nozzle enhanced the atomization processes. Hence reduction of the mean particle size (SMD) and size ratio (SR) of spray is achieved. As a typical example, SMD=33.20μm and SR=8.87 for CK5-S atomizer under Pw=5.2kg/cm2 and Pa=6kg/cm2, while SMD=15.72μm and SR=3.41 for CK5-C atomizer, respectively. Obviously, the CK5-C nozzle has better atomization performance. If the side jet is applied CK5-C atomizer, the quality of spray is further improved. For example, when a side jet with 9LPM airflow is injected into CK5-C atomizer, the particle size and size ratio are further reduced to SMD=13.29μm, SR=2.74, respectively. It turns out that the air-to-liquid mass ratio is 0.618. This indicates that the advantages of the spray from the nozzle with side jet are fine droplets and narrow particle size distribution. Simultaneously, the lower air-to-liquid mass ratio also reduces the operation cost. Results also show that a small amount of side jet can enhance the atomization effect substantially. According to the investigation of multiple orifices nozzle, the atomization performance of the contraction nozzle is better than that of the straight one. Comparison of CK5-C atomizer with single orifice and those contraction nozzles with multiple orifices shows that the water flow rate of the later ones is higher than that of CK5-C atomizer. In addition, the SMD and SR associated with CK5-C atomizer and those with multiple orifices are similar. Hence the contraction nozzle with multiple orifices can be regarded as a better atomization mechanism to produce a large amount of spray with good quality.

    中文摘要 英文摘要 誌謝 目錄 Ⅰ 表目錄 Ⅲ 圖目錄 Ⅳ 符號說明 Ⅹ 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 2 1-2-1 液體碎化過程 3 1-2-2 噴霧流場中之空氣動力現象 5 1-2-3 雙流體式霧化器 6 1-2-4 聲波式霧化器 8 1-3 研究動機 12 第二章 實驗設備及儀器 13 2-1 實驗設備 13 2-1-1 噴霧性能測試台架 13 2-1-2 液體供應系統 13 2-1-3 噴嘴所需高壓氣體供應系統 14 2-1-4 抽氣整流系統 14 2-1-5 霧化裝置 14 2-2 量測儀器 15 2-2-1 RT-Sizer粒徑分析儀 15 2-2-2 RT-Sizer粒徑分析儀校正記錄 16 2-2-3 攝影器材及影像處理系統 17 2-3主要量測參數 17 第三章 實驗步驟及方法 19 3-1 實驗量測條件 19 3-2 流量的量測 19 3-3 視流場觀察 20 3-4 RT-Sizer粒徑分析儀的量測 20 3-5 數據取樣與分析 21 3-6 實驗誤差 21 第四章 結果與討論 23 4-1 噴霧流場觀測 23 4-2 不同噴嘴出口型式對霧化特性之影響 24 4-3 側向噴流對CK5-C霧化器之影響 31 4-3-1 單一側向噴流對霧化特性之影響 31 4-3-2 雙側向噴流對霧化特性之影響 33 4-4 多孔噴頭對CK5-S霧化器之影響 36 4-4-1 四孔直孔噴頭與四孔縮孔噴頭對霧化特性之影響 37 4-4-2 不同出口孔徑大小的四孔縮孔噴頭對霧化特性之影響 38 4-4-3 不同出口孔道數目的縮孔噴頭對霧化特性之影響 41 4-4-4 CK5-C霧化器與多孔噴頭之霧化特性比較 43 第五章 結論 45 參考文獻 47 表目錄 表2-1 常用粒徑定義表 51 表3-1 實驗量測條件表 52 表4-1 水流率與氣液質量比之相關係數比較 (CK5-S、CK5-C、CK5-E霧化器) 53 表4-2 CK5-C霧化器與多孔噴頭之霧化特性比較 54 圖目錄 圖1-1 三種不同霧化動力型式之霧化器 55 圖1-2 平面液膜受低速及高速氣體衝擊破裂機構 56 圖1-3 壓力式霧化器之三種液膜破裂模式 57 圖1-4 單一液滴與空氣交互作用之破裂機構 58 圖1-5 渦漩霧化器噴霧流場結構圖 59 圖1-6 Effervescent霧化器 60 圖1-7 氣泡與流體在流道中的四種混合模式 61 圖1-8 哈特曼聲音產生器 62 圖1-9 超音波氣體衝擊式霧化器(USGA) 63 圖2-1 噴霧實驗設備裝置示意圖 64 圖2-2 霧化裝置之分解組合及流體運動圖 65 圖2-3 不同噴嘴出口型式之CK5型霧化器 66 圖2-4 CK5-S霧化器加側向噴流示意圖 67 圖2-5 不同型式之多孔噴頭示意圖 68 圖2-6 奇點霧化概念示意圖 (a)奇點噴嘴 (b)直管噴嘴 69 圖2-7 RT-Sizer粒徑分析儀裝置圖 70 圖4-1 噴霧流場照相圖 (CK5-S、CK5-C、CK5-E霧化器) 71 圖4-2 噴霧流場照相圖 (水壓5.2kg/cm2,氣壓6kg/cm2,CK5-C霧化器) 72 圖4-3 噴霧流場照相圖 (Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 73 圖4-4 噴霧流場照相圖 (Ø0.8mm縮孔噴頭×4、×6、×8) 74 圖4-5 水流率與氣流率隨水壓與氣壓之變化 (CK5-S霧化器) 75 圖4-6 水流率與氣流率隨水壓與氣壓之變化 (CK5-C霧化器) 76 圖4-7 水流率與氣流率隨水壓與氣壓之變化 (CK5-E霧化器) 77 圖4-8a 水流率隨水壓之變化 (氣壓4kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 78 圖4-8b 水流率隨水壓之變化 (氣壓5kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 78 圖4-8c 水流率隨水壓之變化 (氣壓6kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 78 圖4-9 氣液質量比隨水壓與氣壓之變化 (CK5-S霧化器) 79 圖4-10 氣液質量比隨水壓與氣壓之變化 (CK5-C霧化器) 80 圖4-11 氣液質量比隨水壓與氣壓之變化 (CK5-E霧化器) 81 圖4-12a 氣液質量比隨水壓之變化 (氣壓4kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 82 圖4-12b 氣液質量比隨水壓之變化 (氣壓5kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 82 圖4-12c 氣液質量比隨水壓之變化 (氣壓6kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 82 圖4-13 噴霧平均粒徑D32隨水壓與氣壓之變化 (CK5-S霧化器) 83 圖4-14 噴霧平均粒徑D32隨水壓與氣壓之變化 (CK5-C霧化器) 84 圖4-15 噴霧平均粒徑D32隨水壓與氣壓之變化 (CK5-E霧化器) 85 圖4-16a 噴霧平均粒徑D32隨水壓之變化 (氣壓4kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 86 圖4-16b 噴霧平均粒徑D32隨水壓之變化 (氣壓5kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 86 圖4-16c 噴霧平均粒徑D32隨水壓之變化 (氣壓6kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 86 圖4-17 Dv10與Dv90隨水壓之變化 (氣壓4kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 87 圖4-18 Dv10與Dv90隨水壓之變化 (氣壓5kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 88 圖4-19 Dv10與Dv90隨水壓之變化 (氣壓6kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 89 圖4-20a 噴霧粒度比隨水壓之變化 (氣壓4kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 90 圖4-20b 噴霧粒度比隨水壓之變化 (氣壓5kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 90 圖4-20c 噴霧粒度比隨水壓之變化 (氣壓6kg/cm2,CK5-S、CK5-C、CK5-E霧化器) 90 圖4-21 噴霧顆粒體積及粒子數分佈柱狀圖 (CK5-S霧化器) 91 圖4-22 噴霧顆粒體積及粒子數分佈柱狀圖 (CK5-C霧化器) 92 圖4-23 噴霧顆粒體積及粒子數分佈柱狀圖 (CK5-E霧化器) 93 圖4-24 總氣流量隨單一側向噴流量之變化 (CK5-C霧化器) 94 圖4-25 氣液質量比隨單一側向噴流量之變化 (CK5-C霧化器) 95 圖4-26 噴霧平均粒徑D32隨單一側向噴流量之變化 (CK5-C霧化器) 96 圖4-27 噴霧粒度比隨單一側向噴流量之變化 (CK5-C霧化器) 97 圖4-28 標準差σ隨單一側向噴流量之變化 (CK5-C霧化器) 98 圖4-29 Dv10與Dv90隨單一側向噴流量之變化 (CK5-C霧化器) 99 圖4-30 噴霧顆粒體積及粒子數分佈柱狀圖 (CK5-C霧化器加9LPM單一側向噴流) 100 圖4-31 霧化效能Ea隨單一側向噴流旁通比之變化 (CK5-C霧化器) 101 圖4-32 總氣流量隨雙側向噴流量之變化 (CK5-C霧化器) 102 圖4-33 氣液質量比隨雙側向噴流量之變化 (CK5-C霧化器) 103 圖4-34 噴霧平均粒徑D32隨雙側向噴流量之變化 (CK5-C霧化器) 104 圖4-35 噴霧粒度比隨雙側向噴流量之變化 (CK5-C霧化器) 105 圖4-36 標準差σ隨雙側向噴流量之變化 (CK5-C霧化器) 106 圖4-37 Dv10與Dv90隨雙側向噴流量之變化 (CK5-C霧化器) 107 圖4-38 噴霧顆粒體積及粒子數分佈柱狀圖 (CK5-C霧化器加14LPM雙側向噴流) 108 圖4-39 霧化效能Ea隨雙側向噴流旁通比之變化 (CK5-C霧化器) 109 圖4-40a 水流率與氣流率隨水壓之變化 (氣壓4kg/cm2,Ø1.1mm噴頭×4) 110 圖4-40b 氣液質量比隨水壓之變化 (氣壓4kg/cm2,Ø1.1mm噴頭×4) 110 圖4-41a 水流率與氣流率隨水壓之變化 (氣壓5kg/cm2,Ø1.1mm噴頭×4) 111 圖4-41b 氣液質量比隨水壓之變化 (氣壓5kg/cm2,Ø1.1mm噴頭×4) 111 圖4-42a 水流率與氣流率隨水壓之變化 (氣壓6kg/cm2,Ø1.1mm噴頭×4) 112 圖4-42b 氣液質量比隨水壓之變化 (氣壓6kg/cm2,Ø1.1mm噴頭×4) 112 圖4-43 噴霧平均粒徑D32隨水壓之變化 (Ø1.1mm噴頭×4) 113 圖4-44 噴霧粒度比隨水壓之變化 (Ø1.1mm噴頭×4) 114 圖4-45a 水流率與氣流率隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 115 圖4-45b 氣液質量比隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 115 圖4-46a 水流率與氣流率隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 116 圖4-46b 氣液質量比隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 116 圖4-47a 水流率與氣流率隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 117 圖4-47b 氣液質量比隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 117 圖4-48a 噴霧平均粒徑D32隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 118 圖4-48b 噴霧平均粒徑D32隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 118 圖4-48c 噴霧平均粒徑D32隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 118 圖4-49a 噴霧粒度比隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 119 圖4-49b 噴霧粒度比隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 119 圖4-49c 噴霧粒度比隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 119 圖4-50 噴霧顆粒體積分佈柱狀圖 (Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 120 圖4-51 噴霧顆粒粒子數分佈柱狀圖 (Ø0.8mm、Ø1.0mm、Ø1.1mm縮孔噴頭×4) 121 圖4-52a 水流率與氣流率隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 122 圖4-52b 氣液質量比隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 122 圖4-53a 水流率與氣流率隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 123 圖4-53b 氣液質量比隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 123 圖4-54a 水流率與氣流率隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 124 圖4-54b 氣液質量比隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 124 圖4-55a 噴霧平均粒徑D32隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 125 圖4-55b 噴霧平均粒徑D32隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 125 圖4-55c 噴霧平均粒徑D32隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 125 圖4-56a 噴霧粒度比隨水壓之變化 (氣壓4kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 126 圖4-56b 噴霧粒度比隨水壓之變化 (氣壓5kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 126 圖4-56c 噴霧粒度比隨水壓之變化 (氣壓6kg/cm2,Ø0.8mm縮孔噴頭×4、×6、×8) 126 圖4-57 噴霧顆粒體積分佈柱狀圖 (Ø0.8mm縮孔噴頭×4、×6、×8) 127 圖4-58 噴霧顆粒粒子數分佈柱狀圖 (Ø0.8mm縮孔噴頭×4、×6、×8) 128

    1. 古晉光, 加濕工程應用手冊, 翰寧股份有限公司, pp.10-28, 2000.
    2. A. H. Lefebvre, “Gas Turbine Combustion,” Chapter10, Hemisphere Publishing Corporation, New York, 1983.
    3. A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
    4. R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
    5. N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
    6. B. E. Stapper, W. A. Sowa and G. S. Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114, pp.39-45, 1992.
    7. R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
    8. G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech., Vol.57, part 4, pp.671-672, 1973.
    9. H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982.
    10. 許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993.
    11. 蔡清洲, “漩渦噴流中氣液兩相交互作用實驗分析,” 國立成功大學碩士論文, 1989.
    12. 洪嘉宏, “中空錐形噴霧中連續相及離散相之動力特性研究,” 國立成功大學博士論文, 1991.
    13. 楊坤和, “研究型氣助式噴霧特性研究,” 國立成功大學博士論文, 1992.
    14. 賴維祥, “噴霧發展過程中粒子之輸送現象及其紊流條調制之研究,” 國立成功大學博士論文, 1995.
    15. 徐明生, “雙流體式平面噴嘴霧化特性之研究,” 國立成功大學碩士論文, 1995.
    16. A. A. Rizkalla and A. H. Lefebvre, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp.173-179, April 1975.
    17. A. A. Rizkalla and A. H. Lefebvre, “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol.97, pp.316-320, 1975.
    18. N. K. Rizk and A. H. Lefebvre, “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142, 1983.
    19. J. Beck, A. H. Lefebvre and T. Koblish, “Airblast Atomization at Conditions of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
    20. J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by Impinging Air Streams,” Atomization and Sprays, Vol.1, No.2, pp.155-170, 1991.
    21. J. E. Beck and A. H. Lefebvre, “Airblast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol.7, No.2, March-April 1991.
    22. M. Aligner and S. Witting, “Swirl and Counterswirl Effects in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power, Vol.102, pp.706-710, 1980.
    23. T. Sattlemayer and S. Witting, “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol.108, pp.465-472, 1986.
    24. C. Press, A. K. Gupta and H. G. Semerjian, “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer,” HTD, Vol.104, pp.111-119, 1988.
    25. J. D. Whitlow and A. H. Lefebvre, “Effervescent Atomizer Operation and Spray Characteristics,” Atomization and Spray, Vol.3, pp.137-155, 1993.
    26. 王承光, “氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究,” 國立成功大學碩士論文, 1996.
    27. S. K. Chen and A. H. Lefebvre, “Spray Cone Angles of Effervescent Atomizers,” Atomization and Spray, Vol.4, pp.291-301, 1994.
    28. S. D. Sovani, P. E. Sojka and A. H. Lefebvre, “Effervescent Atomization,” Progress in Energy and Combustion Science, 1999.
    29. B. Leroux, O. Delabroy and F. Lacas, “Influence of Superpulsating Mode on Atomization Properties in Coaxial Air-assisted Atomizers,” Eighth International Conference on Liquid Atomization and Spray Systems, July 2000.
    30. L. Baybel and Z. Orzechowski, “Liquid Atomization,” Taylor & Francis Publisher, 1993.
    31. F. M. Pope, ”Achieving the Right Granulometry,” 科學技術資料中心(STIC), Journal of Food, pp.42-43, 1985.
    32. C. Chiba, Suzuki and Kusano, “On the Pneumo-acoustic Liquid Atomization,” Bulletin of the Yamagata University (Engineering), Vol.21, No.1, pp.1-10, 1990.
    33. A. Mansour and N. Chigier, “The Effects of the Hartman Cavity on the Performance of the USGA Nozzle Used for Aluminum Spray Forming,” Atomization and Spray, Vol.8, pp.1-24, 1998.
    34. N. Chigier and Kihm, “Effects of the Shock Wave on Liquid Atomization of a Two-dimensional Airblast Atomizer,” Atomization and Spray, Vol.1, pp.113-136, 1991.
    35. 張永照, “煙氣脫硫超聲波霧化器研究,” 化工技術第八卷第九期, pp.234-239, 2000.
    36. S. C. Tsai, P. Luu, A. Teshome, P. Childs, and C. S. Tsai, “Ultrasound-Controlled Taylor-Mode Breakup of Liquid Jets,” IEEE, Vol.1, pp.769-772, 1997.
    37. S. C. Tsai, P. Luu, G. Roski, and C. S. Tsai, “Flow Visualization of Ultrasound-Modulated Two-Fluid Atomization,” IEEE, Vol.1, pp.715-718, 1998.
    38. S. C. Tsai, P. Luu, P. Childs, and C. S. Tsai, “Ultrasound-Modulated Twin-Fluid Atomization of a Liquid Jet,” IEEE, Vol.46, pp.139-146, 1999.
    39. S. C. Tsai, “Air-Assisted Ultrasonic Spray Pyrolysis for Nanoparticles Synthesis,” Institute of Applied Science and Engineering Research, Academia Sinica, 2003.
    40. 郭振展, “渦旋作用在哈特曼共振腔中之霧化效應,” 大專學生參與專題研究計劃研究成果報告, NSC 89-2815-C-006-140-R-E, 2001.
    41. 賴春維, ”氣助式霧化器在哈特曼共振腔中之霧化特性,” 國立成功大學碩士論文, 2001.
    42. 盧信智, “空心管共振效應對哈特曼超聲波霧化器之性能研究,” 中華民國燃燒學會第十三屆學術研討會,V-08, 2003.

    下載圖示 校內:立即公開
    校外:2003-07-08公開
    QR CODE