簡易檢索 / 詳目顯示

研究生: 鄭喬予
Cheng, Chiao-Yu
論文名稱: 單重激發態分子的裂變機制於並四苯二極體元件之磁電導響應
The mechanisms of singlet excited state fission in magneto conductance responses of tetracene-based diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 93
中文關鍵詞: 並四苯單重激發態分子的裂變機制磁電導
外文關鍵詞: Magnetoconductance, singlet fission, tetracene
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討並四苯中單重激發態分子的裂變機制之光電流磁電導效應,發現在具有強烈單重激發態分子裂變機制的並四苯材料中,此機制會受到磁場所影響並反應至磁電導效應中,而可以藉由改變元件結構來調變其中之機制。磁電導效應會受到外加電場的作用、摻雜其他材料、施體與受體之間介面的產生而有所改變-在摻雜C60進入並四苯中,C60本身的磁電導效應會開始與其競爭,使得分別表現出單重激發態分子裂變或是C60的磁電導效應。另外在介面產生時,則必須多考慮三重態激發子與載子之反應(Triplet charge reaction)所造成的磁電導影響。而材料中缺陷態的產生則會使得元件在電性的上的貢獻有所改變。由上述結果中,我們認為單重激發態分子的裂變為一反應很快的機制,因此不管改變元件構造、摻雜C60、介面產生,仍然可以觀察到其所貢獻的磁電導效應,只是其他的磁電導效應會開始與其競爭並有所影響。

    We have investigated the mechanisms of singlet fission in magneto conductance (MC) responses of tetracene-based diodes. Strong singlet fission is found in Tetracene, which will be affected by the magnetic field and results in magneto conductance. The MC will be affected by applying bias voltage, doping another material, producing interface between donor and accepter. We found that once the C60 was doped into Tetracene, the MC of C60 will appear and start competing with the MC of single fission. Furthermore, MC caused by triplet charge reaction should also be considered when the interfaces emerge. Based on the discussion above, we believe that singlet fission is a very fast reaction, no matter the changes in devices structure, emerge of surface, or varying in thickness, the MC which is contributed by singlet fission can still be observed, the only difference is the effect will start competing with other mechanisms.

    摘要 I Abstract II~V 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XII 第一章 研究領域與實驗動機 1 1-0 前言-有機半導體簡介 1 1-1 有機半導體磁場效應研究背景介紹 2 1-2 實驗研究動機 12 1-3 大綱 14 第二章 有機磁效應理論機制討論 15 2-0 前言 15 2-1氫原子模型自旋相依量子效應 15 2-1-a 自旋軌道偶合作用 (Spin-orbital coupling) 16 2-1-b 超精細結構 (Hyperfine interaction) 18 2-1-c 黎曼效應 (Zeeman effect) 20 2-1-d 交換偶合作用力 (Exchange interaction) 21 2-2激發態磁場效應 23 2-2-a 電子電洞對模型(Electron-hole pair model) 25 2-2-b 三重態激發子與極化子對之交互作用(Exciton charge interaction model) 29 2-2-c 三重態三重態湮滅模型(Triplet Triplet annihilation) 30 2-2-d單重激發態分子之裂變(Singlet fission model) 31 2-3 雙載子模型Bipolaron model 32 2-4 結論 35 第三章 實驗製作流程與量測分析方法 37 3-0 有機半導體元件製程 37 3-1 ITO導電玻璃基板的製備 37 3-1-a 基板切割、清洗 38 3-1-b 黃光顯影(Photolithography) 38 3-2 有機半導體元件的製備要點 41 3-2-a 基板的清洗 41 3-2-b 陽極 PEDOT:PSS的製程 42 3-2-c 主動層Tetracene與C60的製程 43 3-2-d 陰極 BCP/Al的製程 45 3-3 有機半導體元件的量測與分析 46 3-3-a 有機元件的封裝 46 3-3-b 磁效應量測儀器的架設 48 3-3-c 元件的電性與磁性的量測與分析與訊號處理 50 3-4 結論 51 第四章 有機並四苯之Singlet fission磁電導效應 52 4-0 前言 52 4-1 Tetracene的基本特性 53 4-1-a 元件的電場量測特性 53 4-1-b 元件的磁場量測特性 54 4-1-c探討單層Tetracene磁電導的來源機制 55 4-1-d探討改變外加電壓對磁電導之影響 56 4-1-e單層Tetracene光電流磁電導的數值解析 58 4-2探討混蒸Tetracene與C60的光電流磁電導生成機制 62 4-2-a 論Pentacene和Tetracene混蒸之正負磁電導效應 63 4-2-b 探討C60比例增加之正磁電導效應來源 67 4-2-c C60本身的磁電導 71 4-3論元件為雙層結構對Singlet機制的影響 73 4-3-a雙層元件於光電流下之磁電導效應 74 4-3-b論分別改變Tetracene及C60厚度對負磁電導的影響 76 4-4少量摻雜C60的物理機制 79 4-4-a論C60形成的Trap對Singlet fission的影響 79 4-4-b改變摻雜材料對Singlet fission的影響 81 4-5 結論 83 第五章 結論與未來展望 85 5-1 結論 85 5-2 未來展望 86 參考資料 88

    [1]M. Pope, “Electroluminescence in Organic Crystals,” J. Chem. Phys. 38, 2043(1963)
    [2]V. Dediua, M. Murgia, F.C. Matacotta, C. Taliani, S. Barbaner, “Room temperature spin polarized injection in organic semiconductor,” Solid state Commun. Volume 122, Issues 3–4,(2002)
    [3]Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves” Nature 427(6977), 821–824 (2004)
    [4]M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals,” 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
    [5]U. E. Steiner, and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89, 51 (1989)
    [6]E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generation in poly(phenylene vinylenes),” Phys. Rev. B 46, 9320 (1992)
    [7]J. Kalinowski, J. Szmytkowski, and W. Stampor, “Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3,” Chem. Phys. Lett. 378, 380 (2003).
    [8]J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380, 710 (2003).
    [9]Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π–conjugated semiconductor thin film devices,” Phys. Rev. B 72, 205202 (2005).
    [10]Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, M. Wohlgenannt, S. Qiu, U. Scherf, Hyperfine interaction and magnetoresistance in organic semiconductors,“ Phys. Rev. B 74, 045213 (2006)
    [11]B. Hu, and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors,” Nat. Mater. 6,985 (2007).
    [12]B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21, 1500 (2009).
    [13]N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline),” Phys. Rev. B 80, 241201R (2009).
    [14]J. Y. Song, N. Stingelin, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor,” Phys. Rev. B. 82.085205 (2010).
    [15]P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, “The role of magnetic fields on the transport and efficiency of aluminum tris(8-hydroxyquinoline) based organic light emitting diodes,” J. Appl. Phys. 102, 073710 (2007)
    [16]P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M.Wohlgenannt, “Bipolaron mechanism for organic magnetoresistance,” Phys. Rev. Lett. 99, 216801 (2007)
    [17]W.S. Huang, Z.R. Xu, B. Hu, T. F. Guo, J. C. A. Huang, and T. C. Wen “Magnetoconductance responses of triplet polaron pair charge reaction In hyperfine coupling regime” Appl. Phys. Lett. 103, 253304 (2013)
    [18]Mark W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, R. H. Friend,” Ultrafast Dynamics of Exciton Fission in Polycrystalline Pentacene,” J. Am. Chem. Soc., 133 (31) (2011)
    [19]R.E. Merrifield, P. Avakian, R.P. Groff, “Fission of singlet excitons into pairs of triplet excitons in tetracene crystals,” Chem. Phys. Lett. Volume 3, Issue 3, (1969)
    [20]R. P. Groff, P. Avakian, and R. E. Merrifield, “Coexistence of Exciton Fission and Fusion in Tetracene Crystals,” Phys. Rev. B 1, 815 (1970)
    [21]S. Gasiorowicz, “Quantum physics, 3rd edition,” Wiley international Edition, ISBN 0-471-42945-7.
    [22]D. J. Griffiths, “Introduction to Quantum Mechanics, 2nd edition,” Prentice Hall, ISBN 0-13-111892-7.
    [23]R. Eisberg, and R. Resnick, “Quantum physics of atoms, molecules, solids, nuclei, and particles”, 2nd edition, Wiley press, ISBN 0-471-87373-X (1985)
    [24]W. Wagemans and B. Koopmans, “Spin transport and magnetoresistance in organic semiconductors,” Phys. Status Solidi B 248, No. 5, 1029–1041 (2011).
    [25]Y. Wu, and B. Hu, “Metal electrode effects on spin-orbital coupling and magnetoresistance in organic semiconductor devices,” Appl. Phys. Lett. 89, 203510 (2006)
    [26]A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers,” Phys. Rev. Lett. 86, 1358 (2001).
    [27]A. Köhler, and D. Beljonne, “The singlet-triplet exchange energy in conjugated polymers,” Adv. Funct. Mater. 14, 11 (2004).
    [28]A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers,” Phys. Rev. Lett. 93, 066803 (2004).
    [29]P. Janssen, M. Cox , S.H.W. Wouters, M. Kemerink, M.M. Wienk & B. Koopmans, “ Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways,” Nat. Commun. 4, 2286 (2013)
    [30]W. Wagemans, Engelen, F.L. Bloom, B. Koopmans, “Separating photocurrent and injected current contributions to the organic magnetoresistance,” Synth. Met. 160(3-4), 266-270, (2010)
    [31]S. A. Bagnich, U. Niedermeier, C. Melzer, W. Sarfert, and H. von Seggern, “Origin of magnetic field effect enhancement by electrical stress in organic light emitting diodes,” J. Appl. Phys. 105, 123706 (2009)
    [32]U. Niedermeier, S.A. Bagnich, C. Melzer, W. Sarfert, H. von Seggern, “Tuning of organic magnetoresistance by reversible modification of the active material,” Synth. Met. 160(3–4),251-255, (2010)
    [33]V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J.Epstein, “Anomalous room temperature magnetoresistance in organic semiconductors,” Synth. Met. 156(9–10), 757–761 (2006).
    [34]J. D. Bergeson, V. N. Prigodin, D. M. Lincoln, and A. J. Epstein, “Inversion of Magnetoresistance in Organic Semiconductors,” Phys. Rev. Lett. 100, 067201 (2008)
    [35]M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68, 075211 (2003).
    [36]V. Ern and R. E. Merrifield, “Magnetic Field Effect on Triplet Exciton Quenching in Organic Crystals,” Phys. Rev. Lett. 21, 609 (1968)
    [37]P. D. Reusswig, D. N. Congreve, N. J. Thompson, and M. A. Baldo, “Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer,” Appl. Phys. Lett. 101, 113304 (2012)
    [38]Q. M. Zhang, Y. L. Lei, Q. L. Song, P. Chen, Y. Zhang, and Z. H. Xiong, “Positive and negative components of magnetoconductance in hole transport limited organic light-emitting diodes,” Appl. Phys. Let. 98, 243303 (2011)
    [39]P. Chen, Y. L. Lei, Q. L. Song, Y. Zhang, R. Liu, Q. M. Zhang, Z. H. Xiong, “Magnetoelectroluminescence in tris (8-hydroxyquinolato) aluminum-based organic light-emitting diodes doped with fluorescent dyes,” Appl. Phys. Lett. 95, 213304 (2009)
    [40]R. Liu, Y. Zhang, Y. L. Lei, P. Chen, and Z. H. Xiong, “Magnetic field dependent triplet-triplet annihilation in Alq3-based organic light emitting diodes at different temperatures,” J. Appl. Phys. 105, 093719 (2009)
    [41]F. Millicent B. Smith, J. Michl,”Singlet fission,” Chem. Rev. 110, 6891–6936, (2010)
    [42]Y. F Zhang, S.R. Forrest, “Triplets Contribute to Both an Increase and Loss in Fluorescent Yield in Organic Light Emitting Diodes,” Phys. Rev. Lett. 108, 267404 (2012)
    [43]G.B. Piland, J.J. Burdett, D. Kurunthu, C.J. Bardeen, “Magnetic Field Effects on Singlet Fission and Fluorescence Decay Dynamics in Amorphous Rubrene,” J. Phys. Chem. C, 117 (3), 1224–1236 (2013)
    [44]R. E. Merrifield, “Theory of Magnetic Field Effects on the Mutual Annihilation of Triplet Excitons,” J. Chem. Phys. 48, 4318 (1968)
    [45]J.W. Bai, P. Chen, Y.L. Lei, Y. Zhang, Q.M. Zhang, Z.H. Xiong, F. Li, “Studying singlet fission and triplet fusion by magneto-electroluminescence method in singlet–triplet energy-resonant organic light-emitting diodes,” Org. electron 14 169-174 (2014)
    [46]Y. Zhang, Y.L. Lei, Q.M. Zhang, Z.H. Xiong, “Thermally activated singlet exciton fission observed in rubrenebdoped organic films,” Org. electron. 15.577–581.(2014)
    [47]W. Wagemans, F. L. Bloom, P. A. Bobbert, M. Wohlgenannt, B. Koopmans, “A two-site bipolaron model for organic magnetoresistance,” J. Appl. Phys. 103, 07F303 (2008)
    [48]C. W. Chu, Y. Shao, V. S., Y. Yang, “Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions,” Appl. Phys. Lett. 86, 243506 (2005)
    [49]Z. Xu, Y. Wu, B. Hu, “Dissociation processes of singlet and triplet excitons in organic photovoltaic cells,” Appl. Phys. Lett. 89, 131116 (2006)
    [50]H. Zang, I. N. Ivanov, and B. Hu, “Magnetic studies of photovoltaic processes in organic solar cells,” IEEE J. Sel. Top. Quantum Electron. 16, 1801 (2010)

    無法下載圖示 校內:2019-08-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE