簡易檢索 / 詳目顯示

研究生: 洪亞歆
Hung, Ya-Hsin
論文名稱: Ce-MOF-808連接導電聚合物用於多巴胺感測
Cerium-Based Metal−Organic Framework Interconnected by conducting polymers (CPs) to detect
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 金屬有機骨架導電聚合物電荷傳遞電催化多巴胺電化學感測
外文關鍵詞: MOF, Charge-transfer, Electrocatalysis, Dopamine, Electrochemical sensing
相關次數: 點閱:69下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal-organic framework, MOF) 材料由金屬 離 子 或 金 屬 離 子 簇 所 構 成 的 節 點 (Node) 和有機分子連接器 (Organic linker)構成奈米孔洞材料。由於高度結構可調性、規律均一的孔洞尺寸與形狀、完全互相連通的孔洞結構、永久孔洞性、孔洞尺寸範圍廣(幾個埃到將近十奈米)、及具備極高的比表面積等, MOF 在多種應用中具有巨大的潛力。但在應用於電化學系統會碰到兩個問題,一是大多數的MOF缺乏化學穩定性,二是MOF通常為電的不良導體。
    因此本篇採用以鈰為基底的MOF (Cerium-based MOF, Ce-MOF) Ce-MOF-808作為MOF材 料。Ce-MOF與以鋯為基底的Zr- MOF(Zirconium-based MOF)結構相似,在水中具穩定性,且Ce具備氧化還原活性。再藉由將MOF直接長 在導電聚合物聚吡咯PPy (Polypyrrole)上,透過與導電聚合物的串連來改善MOF晶體與晶體之間的電荷傳遞,增進導電率,並將其應用於電化學感測多巴胺。

    Since Ce-MOF-808(Cerium-based MOFs) is water-stable MOF and possess hexa- cerium nodes to get redox reaction between Ce(IV) and Ce(III), it became an attractive candidates to use in electrochemical application last few years. But it has a great challenge to conquer, which is its low conductivity. To resolve this problem, there is a strategy which is combining MOFs to conducting polymers in series.
    In this work, Ce-MOF-808 are directly grown on the surface of polypyrrole (PPy) by a facile one-step solvothermal synthesis method. And all the Ce-MOF, PPy, and nanocomposites are used as electrocatalyst for the electrochemical sensor detecting dopamine in aqueous electrolytes.

    中文摘要 I Abstract II 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論...1 1-1 電化學介紹 ...1 1-1-1 電化學反應原理... 1 1-1-2 修飾電極... 4 1-1-3 電化學應用... 6 1-2 電化學感測... 8 1-2-1 電化學感測原理... 8 1-2-2 電流式感測(Amperometric Sensor) ... 11 1-2-3 多巴胺感測... 12 1-3 導電聚合物(Conducting polymers, CPs)... 15 1-3-1 導電聚合物介紹 ... 15 1-3-2 聚吡咯(Polypyrrole, PPy)於電化學感測... 20 1-4 金屬有機骨架(Metal−organic framework, MOF)... 27 1-4-1 金屬有機骨架介紹 .... 27 1-4-2 金屬有機骨架應用於電化學感測多巴胺 ... 34 1-4-3 金屬有機骨架摻入聚吡咯...35 1-5 研究動機...42 第二章 實驗方法與儀器介紹...43 2-1 實驗藥品與儀器介紹...43 2-1-1 實驗藥品介紹...43 2-1-2 實驗儀器介紹...44 2-2 實驗方法...45 2-2-1聚吡咯(Polypyrrole, PPy)之製備...45 2-2-2金屬有機骨架 Ce-MOF-808 之製備...46 2-2-3材料 Ce-MOF-808/x-PPy 之製備...47 2-2-4物理混參材料 Ce-MOF-808+PPy之製備...48 2-2-5材料鑑定之儀器使用...48 2-2-6導電度錠片(Pellet)製備...49 2-2-7修飾電極薄膜之製備...50 2-2-8電化學分析方法...50 第三章 結果與討論...52 3-1材料鑑定...52 3-1-1掃描式電子顯微鏡圖(Scanning electron microscopy images, SEM images)..52 3-1-2粉末X射線繞射圖譜(X-ray diffraction patterns, XRD patterns)...53 3-1-3 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)...55 3-1-4氮氣吸脫附曲線(Nitrogen adsorption−desorption isotherms and density functional theory (DFT) pore size distribution)...56 3-1-5奈米複合材料中聚吡咯質量百分濃度(Mass fraction of PPy in Ce-MOF-808/x mg-PPy nanocomposites) ...59 3-1-6能量色散X-射線光譜(Energy dispersive X-ray spectroscopy, EDS)..60 3-1-7導電度(Electrical conductivity)...61 3-2電化學結果分析...65 3-2-1 循環伏安法分析...65 3-2-2電催化多巴胺分析...71 3-2-3 微分脈衝伏安分析(DPV)檢測分析...77 3-2-4干擾物測試...84 第四章 結論...88 第五章 未來展望與建議...89 參考文獻...90

    [1] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons2022.
    [2] D.-W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors–a review, Analytica Chimica Acta, 1033 (2018) 1-34.
    [3] C. Yang, M.E. Denno, P. Pyakurel, B.J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review, Analytica Chimica Acta, 887 (2015) 17-37.
    [4] F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor, Journal of Alloys and Compounds, 716 (2017) 96-105.
    [5] S. Bashir, S. Ramesh, K. Ramesh, A. Numan, J. Iqbalc, Conducting polymer composites in electrochemical sensors, Central West Publishing: Orange, Australia, 2018.
    [6] P. Bertoncello, I. Ciani, F. Li, P.R. Unwin, Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir− Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry, Langmuir, 22 (2006) 10380-10388.
    [7] M. Shi, F.C. Anson, Rapid oxidation of Ru(NH3)63+ by Os(bpy)33+ within nafion coatings on electrodes, Langmuir, 12 (1996) 2068-2075. DOI: 10.1021/la950863j.
    [8] A. Safranj, S. Gershuni, J. Rabani, Hydrophobic and ionic exchange of tris (2, 2'-bipyridine) ruthenium (II), methylviologen, and sulfonatopropylviologen in Nafion films, Langmuir, 9 (1993) 3676-3681.
    [9] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008) 845-854.
    [10] A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen, Accounts of Chemical Research, 28 (1995) 141-145.
    [11] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review, Acs Catalysis, 6 (2016) 8069-8097.
    [12] E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chemical Society Reviews, 38 (2009) 89-99.
    [13] B.C. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414 (2001) 345-352.
    [14] M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chemical Reviews, 116 (2016) 3594-3657.
    [15] C. Ge, R. Ramachandran, F. Wang, CeO2-based two-dimensional layered nanocomposites derived from a metal–organic framework for selective electrochemical dopamine sensors, Sensors, 20 (2020) 4880.
    [16] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [17] R.J. Mortimer, Electrochromic materials, Annual Review of Materials Research, 41 (2011) 241-268.
    [18] F.B. Ajdari, E. Kowsari, M.N. Shahrak, A. Ehsani, Z. Kiaei, H. Torkzaban, M. Ershadi, S.K. Eshkalak, V. Haddadi-Asl, A. Chinnappan, A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors, Coordination Chemistry Reviews, 422 (2020) 213441.
    [19] J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting, Advanced Materials, 28 (2016) 215-230.
    [20] L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chemical Society Reviews, 49 (2020) 3072-3106.
    [21] J. Wang, Electrochemical glucose biosensors, Chemical Reviews, 108 (2008) 814-825.
    [22] J.R. Stetter, W.R. Penrose, S. Yao, Sensors, chemical sensors, electrochemical sensors, and ECS, Journal of the Electrochemical Society, 150 (2003) S11.
    [23] M.H. Naveen, N.G. Gurudatt, Y.-B. Shim, Applications of conducting polymer composites to electrochemical sensors: a review, Applied Materials Today, 9 (2017) 419-433.
    [24] P.N. Bartlett, Bioelectrochemistry: fundamentals, experimental techniques and applications, John Wiley & Sons2008.
    [25] J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar, Electrochemical sensors and their applications: a review, Chemosensors, 10 (2022) 363.
    [26] R. Knake, P. Jacquinot, A.W. Hodgson, P.C. Hauser, Amperometric sensing in the gas-phase, Analytica Chimica Acta, 549 (2005) 1-9.
    [27] A.W. Hodgson, P. Jacquinot, L.R. Jordan, P.C. Hauser, Amperometric gas sensors of high sensitivity, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 11 (1999) 782-787.
    [28] R.C. Alkire, D.M. Kolb, J. Lipkowski, P.N. Ross, Chemically modified electrodes, John Wiley & Sons2009.
    [29] G.J. Maclay, W.J. Buttner, J.R. Stetter, Microfabricated amperometric gas sensors, IEEE Transactions on Electron Devices, 35 (1988) 793-799.
    [30] J.R. Stetter, J. Li, Amperometric gas sensors a review, Chemical Reviews, 108 (2008) 352-366.
    [31] M. Lakshmanakumar, N. Nesakumar, A.J. Kulandaisamy, J.B.B. Rayappan, Principles and recent developments in optical and electrochemical sensing of dopamine: A comprehensive review, Measurement, 183 (2021) 109873.
    [32] X. Liu, J. Liu, Biosensors and sensors for dopamine detection, View, 2 (2021) 20200102.
    [33] A. Thamilselvan, P. Manivel, V. Rajagopal, N. Nesakumar, V. Suryanarayanan, Improved electrocatalytic activity of Au@ Fe3O4 magnetic nanoparticles for sensitive dopamine detection, Colloids and Surfaces B: Biointerfaces, 180 (2019) 1-8.
    [34] L. Li, H. Liu, Y. Shen, J. Zhang, J.-J. Zhu, Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine, Analytical Chemistry, 83 (2011) 661-665.
    [35] A. Devadoss, C. Dickinson, T.E. Keyes, R.J. Forster, Electrochemiluminescent metallopolymer− nanoparticle composites: nanoparticle size effects, Analytical Chemistry, 83 (2011) 2383-2387.
    [36] A. Naccarato, E. Gionfriddo, G. Sindona, A. Tagarelli, Development of a simple and rapid solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine, Analytica Chimica Acta, 810 (2014) 17-24.
    [37] L. Song, Y. Zhu, Z. Yang, C. Wang, X. Lu, Oxidase-mimicking activity of perovskite LaMnO 3+ δ nanofibers and their application for colorimetric sensing, Journal of Materials Chemistry B, 6 (2018) 5931-5939.
    [38] P.E. Phillips, G.D. Stuber, M.L. Heien, R.M. Wightman, R.M. Carelli, Subsecond dopamine release promotes cocaine seeking, Nature, 422 (2003) 614-618.
    [39] Y. Mao, Y. Bao, D. Han, F. Li, L. Niu, Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing, Biosensors and Bioelectronics, 38 (2012) 55-60.
    [40] J.B. Ellis, Pharmaceutical and personal care products (PPCPs) in urban receiving waters, Environmental Pollution, 144 (2006) 184-189.
    [41] T.E. Doll, F.H. Frimmel, Fate of pharmaceuticals––photodegradation by simulated solar UV-light, Chemosphere, 52 (2003) 1757-1769.
    [42] K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine, Analytical and Bioanalytical Chemistry, 405 (2013) 3753-3771.
    [43] T.-Q. Xu, Q.-L. Zhang, J.-N. Zheng, Z.-Y. Lv, J. Wei, A.-J. Wang, J.-J. Feng, Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide, Electrochimica Acta, 115 (2014) 109-115.
    [44] B. Zhang, D. Huang, X. Xu, G. Alemu, Y. Zhang, F. Zhan, Y. Shen, M. Wang, Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode, Electrochimica Acta, 91 (2013) 261-266.
    [45] S.M. Siddeeg, Electrochemical detection of neurotransmitter dopamine: a review, International Journal of Electrochemical Science, 15 (2020) 599-612. DOI: 10.20964/2020.01.61.
    [46] H. Peng, L. Zhang, C. Soeller, J. Travas-Sejdic, Conducting polymers for electrochemical DNA sensing, Biomaterials, 30 (2009) 2132-2148.
    [47] C. Zhao, X. Jia, K. Shu, C. Yu, G.G. Wallace, C. Wang, Conducting polymer composites for unconventional solid-state supercapacitors, Journal of Materials Chemistry A, 8 (2020) 4677-4699.
    [48] W.-S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 82 (1986) 2385-2400.
    [49] R.D. McCullough, R.D. Lowe, M. Jayaraman, D.L. Anderson, Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly (3-alkylthiophenes), The Journal of Organic Chemistry, 58 (1993) 904-912.
    [50] P.K. Ho, J.-S. Kim, J.H. Burroughes, H. Becker, S.F. Li, T.M. Brown, F. Cacialli, R.H. Friend, Molecular-scale interface engineering for polymer light-emitting diodes, Nature, 404 (2000) 481-484.
    [51] B. Sankaran, J.R. Reynolds, High-contrast electrochromic polymers from alkyl-derivatized poly (3, 4-ethylenedioxythiophenes), Macromolecules, 30 (1997) 2582-2588.
    [52] M.A. Khan, S.P. Armes, Conducting polymer‐coated latex particles, Advanced Materials, 12 (2000) 671-674.
    [53] G.G. Wallace, C.O. Too, D.L. Officer, P.C. Dastoor, Photoelectrochemical cells based on inherently conducting polymers, MRS Bulletin, 30 (2005) 46-49.
    [54] L. Shacklette, J. Toth, N. Murthy, R. Baughman, Polyacetylene and polyphenylene as anode materials for nonaqueous secondary batteries, Journal of the Electrochemical Society, 132 (1985) 1529.
    [55] D.E. Tallman, G. Spinks, A. Dominis, G.G. Wallace, Electroactive conducting polymers for corrosion control: part 1. general introduction and a review of non-ferrous metals, Journal of Solid State Electrochemistry, 6 (2002) 73-84.
    [56] L. Dai, P. Soundarrajan, T. Kim, Sensors and sensor arrays based on conjugated polymers and carbon nanotubes, Pure and Applied Chemistry, 74 (2002) 1753-1772.
    [57] S. Geetha, C.R. Rao, M. Vijayan, D. Trivedi, Biosensing and drug delivery by polypyrrole, Analytica Chimica Acta, 568 (2006) 119-125.
    [58] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, K. Reuter, PEDOT: principles and applications of an intrinsically conductive polymer, CRC Press2010.
    [59] G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications, Rsc Advances, 5 (2015) 37553-37567.
    [60] M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics, 17 (2002) 345-359.
    [61] T. Bashir, Conjugated polymer-based conductive fibers for smart textile applications, Chalmers Tekniska Hogskola (Sweden)2013.
    [62] C. Cochrane, V. Koncar, M. Lewandowski, C. Dufour, Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite, Sensors, 7 (2007) 473-492.
    [63] N. Trifigny, F. Kelly, C. Cochrane, F. Boussu, D. Soulat, V. Koncar, PEDOT: PSS based sensors for in-situ measurement during the composite material weaving process, Proceedings of the 13th Association of Universities for Textiles World Textile Conference, Dresden, Germany, 2013, pp. 47.
    [64] Y. Li, S. Wang, Y. Zhang, Y. Zhang, Electrical properties and morphology of polypropylene/epoxy/glass fiber composites filled with carbon black, Journal of Applied Polymer Science, 98 (2005) 1142-1149.
    [65] Y. Harel, S. Azoubel, S. Magdassi, J.-P. Lellouche, A dispersability study on poly (thiophen-3-yl-acetic acid) and PEDOT multi-walled carbon nanotube composites using an analytical centrifuge, Journal of Colloid and Interface Science, 390 (2013) 62-69.
    [66] R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering, Acta Biomaterialia, 10 (2014) 2341-2353.
    [67] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41 (2012) 797-828.
    [68] S. Benhamou, M. Hamouni, Determination of reflection loss, absorption loss, internal reflection and shielding effectiveness of a double electromagnetic shield of conductive polymer, J. Mater. Environ. Sci, 5 (2014) 1982-1987.
    [69] L. Dai, Intelligent macromolecules for smart devices: from materials synthesis to device applications, Springer Science & Business Media2004.
    [70] A. Bakhshi, G. Bhalla, Electrically conducting polymers: Materials of the twentyfirst century, (2004).
    [71] G.G. Wallace, P.R. Teasdale, G.M. Spinks, L.A. Kane-Maguire, Conductive electroactive polymers: intelligent polymer systems, CRC press2008.
    [72] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources, 196 (2011) 1-12.
    [73] G. Wegner, Polymers with metal‐like conductivity—a rreview of their synthesis, structure and properties, Angewandte Chemie International Edition in English, 20 (1981) 361-381.
    [74] P. Chandrasekhar, Conducting polymers, fundamentals and applications: a practical approach, Springer Science & Business Media2013.
    [75] R.D. McCullough, The chemistry of conducting polythiophenes, Advanced Materials, 10 (1998) 93-116.
    [76] J. Heinze, Electrochemistry of conducting polymers, Synthetic Metals, 43 (1991) 2805-2823.
    [77] J.R. Reynolds, B.C. Thompson, T.A. Skotheim, Handbook of Conducting Polymers, -2 Volume Set, CRC Press2019.
    [78] D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chemical Reviews, 100 (2000) 2537-2574.
    [79] C. Steffens, A.N. Brezolin, J. Steffens, Conducting polymer-based cantilever sensors for detection humidity, Scanning, 2018 (2018).
    [80] T. Sen, S. Mishra, N.G. Shimpi, Synthesis and sensing applications of polyaniline nanocomposites: a review, Rsc Advances, 6 (2016) 42196-42222. DOI: 10.1039/c6ra03049a.
    [81] S. Iqbal, S. Ahmad, Recent development in hybrid conducting polymers: synthesis, applications and future prospects, Journal of Industrial and Engineering Chemistry, 60 (2018) 53-84.
    [82] L. Fang, L. Zhao, X. Liang, H. Xiao, L. Qian, Effects of oxidant and dopants on the properties of cellulose/PPy conductive composite hydrogels, Journal of Applied Polymer Science, 133 (2016).
    [83] A. Mahun, S. Abbrent, P. Bober, J. Brus, L. Kobera, Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters, Synthetic Metals, 259 (2020) 116250.
    [84] T.-H. Le, Y. Kim, H. Yoon, Electrical and electrochemical properties of conducting polymers, Polymers, 9 (2017) 150.
    [85] Y. Tan, K. Ghandi, Kinetics and mechanism of pyrrole chemical polymerization, Synthetic Metals, 175 (2013) 183-191.
    [86] C. Sasso, D. Beneventi, E. Zeno, D. Chaussy, M. Petit-Conil, N. Belgacem, Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review, BioResources, 6 (2011).
    [87] R.B. Choudhary, S. Ansari, B. Purty, Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: a review, Journal of Energy Storage, 29 (2020) 101302.
    [88] H. Song, T. Li, Y. Han, Y. Wang, C. Zhang, Q. Wang, Optimizing the polymerization conditions of conductive polypyrrole, Journal of Photopolymer Science and Technology, 29 (2016) 803-808.
    [89] R.S. Utami, I. Puspasari, L.K. Shyuan, A.B. Mohamed, S. Alva, Effect of process parameters on the synthesis of polypyrrole by the Taguchi method, Malaysian Journal of Analytical Sciences, 20 (2016) 660-669.
    [90] Y. Chen, F. Wang, L. Dong, Z. Li, L. Chen, X. He, J. Gong, J. Zhang, Q. Li, Design and optimization of flexible polypyrrole/bacterial cellulose conductive nanocomposites using response surface methodology, Polymers, 11 (2019) 960.
    [91] I. Sapurina, Y. Li, E. Alekseeva, P. Bober, M. Trchová, Z. Morávková, J. Stejskal, Polypyrrole nanotubes: the tuning of morphology and conductivity, Polymer, 113 (2017) 247-258.
    [92] Q. Yan, W. Pan, S. Zhong, R. Zhu, G. Li, Effect of solvents on the preparation and corrosion protection of polypyrrole, Progress in Organic Coatings, 132 (2019) 298-304.
    [93] V.V. Tat'yana, O.N. Efimov, Polypyrrole: a conducting polymer; its synthesis, properties and applications, Russian Chemical Reviews, 66 (1997) 443.
    [94] N.D. Gupta, S. Maity, K.K. Chattopadhyay, Field emission enhancement of polypyrrole due to band bending induced tunnelling in polypyrrole-carbon nanotubes nanocomposite, Journal of Industrial and Engineering Chemistry, 20 (2014) 3208-3213.
    [95] C. Cassignol, P. Olivier, A. Ricard, Influence of the dopant on the polypyrrole moisture content: effects on conductivity and thermal stability, Journal of Applied Polymer Science, 70 (1998) 1567-1577.
    [96] D. Beneventi, S. Alila, S. Boufi, D. Chaussy, P. Nortier, Polymerization of pyrrole on cellulose fibres using a FeCl 3 impregnation-pyrrole polymerization sequence, Cellulose, 13 (2006) 725-734.
    [97] A. Yussuf, M. Al-Saleh, S. Al-Enezi, G. Abraham, Synthesis and characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties, International Journal of Polymer Science, 2018 (2018).
    [98] J. Tabačiarová, M. Mičušík, P. Fedorko, M. Omastová, Study of polypyrrole aging by XPS, FTIR and conductivity measurements, Polymer Degradation and Stability, 120 (2015) 392-401.
    [99] M. Ali Mohsin, N.K. Shrivastava, N. Basar, A. Arsad, A. Hassan, The effect of sonication time on the properties of electrically conductive PANI/Sago starch blend prepared by the one-pot synthesis method, Frontiers in Materials, 6 (2019) 297.
    [100] A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, S.B. Waje, M.A. Atieh, Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges, Journal of Power Sources, 352 (2017) 174-186.
    [101] A. Ramanavičius, A. Ramanavičienė, A. Malinauskas, Electrochemical sensors based on conducting polymer—polypyrrole, Electrochimica Acta, 51 (2006) 6025-6037.
    [102] M. Wolszczak, J. Kroh, M. Abdel-Hamid, Some aspects of the radiation processing of conducting polymers, Radiat. Phys. Chem., 45 (1995) 71-78.
    [103] S. Chavoshizadeh, S. Pirsa, F. Mohtarami, Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite, Food Packaging and Shelf Life, 24 (2020) 100501.
    [104] R. Ansari, Polypyrrole conducting electroactive polymers: synthesis and stability studies, E-Journal of Chemistry, 3 (2006) 186-201.
    [105] V.K. Gupta, M.L. Yola, N. Özaltın, N. Atar, Z. Üstündağ, L. Uzun, Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin, Electrochimica Acta, 112 (2013) 37-43.
    [106] M. Zaabal, M. Doulache, N.K. Bakirhan, S. Kaddour, B. Saidat, S.A. Ozkan, A facile strategy for construction of sensor for detection of ondansetron and investigation of its redox behavior and thermodynamic parameters, Electroanalysis, 31 (2019) 1279-1290.
    [107] C. Apetrei, Novel method based on polypyrrole‐modified sensors and emulsions for the evaluation of bitterness in extra virgin olive oils, Food Research International, 48 (2012) 673-680.
    [108] Z. Yang, Q. Sheng, S. Zhang, X. Zheng, J. Zheng, One-pot synthesis of Fe 3 O 4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine, Microchimica Acta, 184 (2017) 2219-2226.
    [109] Z. Yang, X. Zheng, J. Zheng, Facile synthesis of prussian blue/hollow polypyrrole nanocomposites for enhanced hydrogen peroxide sensing, Industrial & Engineering Chemistry Research, 55 (2016) 12161-12166.
    [110] Ş. Ulubay, Z. Dursun, Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid, Talanta, 80 (2010) 1461-1466.
    [111] X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen, Evaluation of biocompatibility of polypyrrole in vitro and in vivo, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68 (2004) 411-422.
    [112] A. Ramanaviciene, A. Ramanavicius, Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode, Analytical and Bioanalytical Chemistry, 379 (2004) 287-293.
    [113] M. Li, H. Zhu, X. Mao, W. Xiao, D. Wang, Electropolymerization of polypyrrole at the three-phase interline: Influence of polymerization conditions, Electrochimica Acta, 92 (2013) 108-116.
    [114] A. Wisitsoraat, A. Tuantranont, Graphene-based chemical and biosensors, Applications of Nanomaterials in Sensors and Diagnostics, (2013) 103-141.
    [115] J.-K. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications, Energy & Environmental Science, 7 (2014) 2071-2100.
    [116] G. Xu, P. Nie, H. Dou, B. Ding, L. Li, X. Zhang, Exploring metal organic frameworks for energy storage in batteries and supercapacitors, Materials Today, 20 (2017) 191-209.
    [117] X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion, Chemical Society Reviews, 46 (2017) 2660-2677.
    [118] J. Mehta, N. Bhardwaj, S.K. Bhardwaj, K.-H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates, Coordination Chemistry Reviews, 322 (2016) 30-40.
    [119] O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O.z.r. Yazaydın, J.T. Hupp, Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?, Journal of the American Chemical Society, 134 (2012) 15016-15021.
    [120] I.M. Hönicke, I. Senkovska, V. Bon, I.A. Baburin, N. Bönisch, S. Raschke, J.D. Evans, S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials, Angewandte Chemie International Edition, 57 (2018) 13780-13783.
    [121] D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, Ł.J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.-H. Emwas, MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage, Journal of the American Chemical Society, 137 (2015) 13308-13318.
    [122] C.-Y. Gao, H.-R. Tian, J. Ai, L.-J. Li, S. Dang, Y.-Q. Lan, Z.-M. Sun, A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2, Chemical Communications, 52 (2016) 11147-11150.
    [123] D.-X. Xue, Y. Belmabkhout, O. Shekhah, H. Jiang, K. Adil, A.J. Cairns, M. Eddaoudi, Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction, Journal of the American Chemical Society, 137 (2015) 5034-5040.
    [124] A. Chakraborty, S. Roy, M. Eswaramoorthy, T.K. Maji, Flexible MOF–aminoclay nanocomposites showing tunable stepwise/gated sorption for C2H2, CO2 and separation for CO2/N2 and CO2/CH4, Journal of Materials Chemistry A, 5 (2017) 8423-8430.
    [125] E. Bellido, T. Hidalgo, M.V. Lozano, M. Guillevic, R. Simón‐Vázquez, M.J. Santander‐Ortega, Á. González‐Fernández, C. Serre, M.J. Alonso, P. Horcajada, Heparin‐engineered mesoporous iron metal‐organic framework nanoparticles: toward stealth drug nanocarriers, Advanced Healthcare Materials, 4 (2015) 1246-1257.
    [126] M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Nanostructured metal–organic frameworks and their bio-related applications, Coordination Chemistry Reviews, 307 (2016) 342-360.
    [127] J. Duan, S. Chen, C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nature Communications, 8 (2017) 15341.
    [128] S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution, Nature Energy, 1 (2016) 1-10.
    [129] Z. Hu, B.J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection, Chemical Society Reviews, 43 (2014) 5815-5840.
    [130] F.Y. Yi, D. Chen, M.K. Wu, L. Han, H.L. Jiang, Chemical sensors based on metal–organic frameworks, ChemPlusChem, 81 (2016) 675-690.
    [131] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nature Reviews Materials, 1 (2016) 1-15.
    [132] T. Islamoglu, S. Goswami, Z. Li, A.J. Howarth, O.K. Farha, J.T. Hupp, Postsynthetic tuning of metal–organic frameworks for targeted applications, Accounts of Chemical Research, 50 (2017) 805-813.
    [133] S.M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks, Chemical Reviews, 112 (2012) 970-1000.
    [134] J.-H. Li, Y.-S. Wang, Y.-C. Chen, C.-W. Kung, Metal–organic frameworks toward electrocatalytic applications, Applied Sciences, 9 (2019) 2427.
    [135] N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal–organic frameworks, Chemical Reviews, 114 (2014) 10575-10612.
    [136] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, Journal of the American Chemical Society, 130 (2008) 13850-13851.
    [137] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Stable metal–organic frameworks: design, synthesis, and applications, Advanced Materials, 30 (2018) 1704303.
    [138] S. Yuan, J.-S. Qin, C.T. Lollar, H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends, ACS Central Science, 4 (2018) 440-450.
    [139] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts, Chemical Society Reviews, 38 (2009) 1450-1459.
    [140] Q. Yang, Q. Xu, H.-L. Jiang, Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis, Chemical Society Reviews, 46 (2017) 4774-4808.
    [141] M. Lammert, M.T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K.A. Lomachenko, D. De Vos, N. Stock, Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity, Chemical Communications, 51 (2015) 12578-12581.
    [142] M. Lammert, C. Glißmann, H. Reinsch, N. Stock, Synthesis and characterization of new Ce (IV)-MOFs exhibiting various framework topologies, Crystal Growth & Design, 17 (2017) 1125-1131.
    [143] L.S. Xie, G. Skorupskii, M. Dincă, Electrically conductive metal–organic frameworks, Chemical Reviews, 120 (2020) 8536-8580.
    [144] C.-W. Kung, P.-C. Han, C.-H. Chuang, K.C.-W. Wu, Electronically conductive metal–organic framework-based materials, APL Materials, 7 (2019) 110902.
    [145] C.H. Hendon, D. Tiana, A. Walsh, Conductive metal–organic frameworks and networks: fact or fantasy?, Physical Chemistry Chemical Physics, 14 (2012) 13120-13132.
    [146] S. Lin, P.M. Usov, A.J. Morris, The role of redox hopping in metal–organic framework electrocatalysis, Chemical Communications, 54 (2018) 6965-6974.
    [147] C.-W. Kung, T.-H. Chang, L.-Y. Chou, J.T. Hupp, O.K. Farha, K.-C. Ho, Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection, Electrochemistry Communications, 58 (2015) 51-56.
    [148] S.R. Ahrenholtz, C.C. Epley, A.J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism, Journal of the American Chemical Society, 136 (2014) 2464-2472.
    [149] C.-W. Kung, S. Goswami, I. Hod, T.C. Wang, J. Duan, O.K. Farha, J.T. Hupp, Charge transport in zirconium-based metal–organic frameworks, Accounts of Chemical Research, 53 (2020) 1187-1195.
    [150] K. Maindan, X. Li, J. Yu, P. Deria, Controlling charge-transport in metal–organic frameworks: contribution of topological and spin-state variation on the iron–porphyrin centered redox hopping rate, The Journal of Physical Chemistry B, 123 (2019) 8814-8822.
    [151] R. Shimoni, W. He, I. Liberman, I. Hod, Tuning of redox conductivity and electrocatalytic activity in metal–organic framework films via control of defect site density, The Journal of Physical Chemistry C, 123 (2019) 5531-5539.
    [152] C.-W. Kung, J.E. Mondloch, T.C. Wang, W. Bury, W. Hoffeditz, B.M. Klahr, R.C. Klet, M.J. Pellin, O.K. Farha, J.T. Hupp, Metal–organic framework thin films as platforms for atomic layer deposition of cobalt ions to enable electrocatalytic water oxidation, ACS Applied Materials & Interfaces, 7 (2015) 28223-28230.
    [153] I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha, J.T. Hupp, Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2, Acs Catalysis, 5 (2015) 6302-6309.
    [154] S. Lin, Y. Pineda‐Galvan, W.A. Maza, C.C. Epley, J. Zhu, M.C. Kessinger, Y. Pushkar, A.J. Morris, Electrochemical water oxidation by a catalyst‐modified metal–organic framework thin film, ChemSusChem, 10 (2017) 514-522.
    [155] B.A. Johnson, A. Bhunia, S. Ott, Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film, Dalton Transactions, 46 (2017) 1382-1388.
    [156] C.-H. Chuang, J.-H. Li, Y.-C. Chen, Y.-S. Wang, C.-W. Kung, Redox-hopping and electrochemical behaviors of metal–organic framework thin films fabricated by various approaches, The Journal of Physical Chemistry C, 124 (2020) 20854-20863.
    [157] C. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, J. You, Q. Xu, J. Li, Y. Yamauchi, New strategies for novel MOF-derived carbon materials based on nanoarchitectures, Chem, 6 (2020) 19-40.
    [158] H. Konnerth, B.M. Matsagar, S.S. Chen, M.H. Prechtl, F.-K. Shieh, K.C.-W. Wu, Metal-organic framework (MOF)-derived catalysts for fine chemical production, Coordination Chemistry Reviews, 416 (2020) 213319.
    [159] J. Tang, R.R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S.M. Alshehri, N. Kobayashi, S. Tominaka, Y. Ide, J.H. Kim, Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons, Scientific Reports, 6 (2016) 30295.
    [160] J. Hazarika, A. Kumar, Controllable synthesis and characterization of polypyrrole nanoparticles in sodium dodecylsulphate (SDS) micellar solutions, Synthetic Metals, 175 (2013) 155-162. DOI: 10.1016/j.synthmet.2013.05.020.
    [161] F. Lopez-Garcia, G. Canche-Escamilla, A.L. Ocampo-Flores, P. Roquero-Tejeda, L.C. Ordonez, Controlled size nano-polypyrrole synthetized in micro-emulsions as Pt support for the ethanol electro-oxidation reaction, International Journal of Electrochemical Science, 8 (2013) 3794-3813.
    [162] L.J. Murray, M. Dincă, J.R. Long, Hydrogen storage in metal–organic frameworks, Chemical Society Reviews, 38 (2009) 1294-1314.
    [163] X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang, H. Guo, Highly dispersible and stable copper terephthalate metal–organic framework–graphene oxide nanocomposite for an electrochemical sensing application, ACS Applied Materials & Interfaces, 6 (2014) 11573-11580.
    [164] C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study, Nano Energy, 26 (2016) 66-73.
    [165] K.F. Babu, M.A. Kulandainathan, I. Katsounaros, L. Rassaei, A.D. Burrows, P.R. Raithby, F. Marken, Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures, Electrochemistry Communications, 12 (2010) 632-635.
    [166] J. Jacobsen, A. Ienco, R. D'Amato, F. Costantino, N. Stock, The chemistry of Ce-based metal–organic frameworks, Dalton Transactions, 49 (2020) 16551-16586.
    [167] Y.-T. Chiang, Y.-J. Gu, Y.-D. Song, Y.-C. Wang, C.-W. Kung, Cerium-based metal–organic framework as an electrocatalyst for the reductive detection of dopamine, Electrochemistry Communications, 135 (2022) 107206.
    [168] T.Y. Huang, C.W. Kung, Y.T. Liao, S.Y. Kao, M. Cheng, T.H. Chang, J. Henzie, H.R. Alamri, Z.A. Alothman, Y. Yamauchi, Enhanced charge collection in MOF‐525–PEDOT nanotube composites enable highly sensitive biosensing, Advanced Science, 4 (2017) 1700261.
    [169] B. Liang, B. Li, Z. Li, B. Chen, Progress in multifunctional metal–organic frameworks/polymer hybrid membranes, Chemistry–A European Journal, 27 (2021) 12940-12952.
    [170] X. Ma, Y. Chai, P. Li, B. Wang, Metal–organic framework films and their potential applications in environmental pollution control, Accounts of Chemical Research, 52 (2019) 1461-1470.
    [171] S. Nagata, K. Kokado, K. Sada, Metal–organic framework tethering PNIPAM for ON–OFF controlled release in solution, Chemical Communications, 51 (2015) 8614-8617.
    [172] K. Xie, Q. Fu, Y. He, J. Kim, S.J. Goh, E. Nam, G.G. Qiao, P.A. Webley, Synthesis of well dispersed polymer grafted metal-organic framework nanoparticles, Chemical Communications, 51 (2015) 15566-15569. DOI: 10.1039/c5cc06694h.
    [173] Y.H. Shih, Y.C. Kuo, S. Lirio, K.Y. Wang, C.H. Lin, H.Y. Huang, A simple approach to enhance the water stability of a metal‐organic framework, Chemistry–A European Journal, 23 (2017) 42-46.
    [174] M. Kalaj, K.C. Bentz, S. Ayala Jr, J.M. Palomba, K.S. Barcus, Y. Katayama, S.M. Cohen, MOF-polymer hybrid materials: From simple composites to tailored architectures, Chemical reviews, 120 (2020) 8267-8302.
    [175] S. Ayala, K.C. Bentz, S.M. Cohen, Block co-polyMOFs: morphology control of polymer–MOF hybrid materials, Chemical science, 10 (2019) 1746-1753.
    [176] T. Uemura, N. Yanai, S. Watanabe, H. Tanaka, R. Numaguchi, M.T. Miyahara, Y. Ohta, M. Nagaoka, S. Kitagawa, Unveiling thermal transitions of polymers in subnanometre pores, Nature Communications, 1 (2010) 8. DOI: 10.1038/ncomms1091.
    [177] K. Koh, A.G. Wong-Foy, A.J. Matzger, Coordination copolymerization mediated by Zn4O (CO2R) 6 metal clusters: a balancing act between statistics and geometry, Journal of the American Chemical Society, 132 (2010) 15005-15010.
    [178] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities, Nano Letters, 14 (2014) 5761-5765.
    [179] Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, G. Qian, Dual‐emitting MOF⊃ dye composite for ratiometric temperature sensing, Advanced Materials, 27 (2015) 1420-1425.
    [180] H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, G. Qian, Polarized three-photon-pumped laser in a single MOF microcrystal, Nature Communications, 7 (2016) 11087.
    [181] H. He, Y. Cui, B. Li, B. Wang, C. Jin, J. Yu, L. Yao, Y. Yang, B. Chen, G. Qian, Confinement of perovskite‐QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence, Advanced Materials, 31 (2019) 1806897.
    [182] B. Li, H.M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Emerging multifunctional metal–organic framework materials, Advanced Materials, 28 (2016) 8819-8860.
    [183] D.S. Zhang, Q. Gao, Z. Chang, X.T. Liu, B. Zhao, Z.H. Xuan, T.L. Hu, Y.H. Zhang, J. Zhu, X.H. Bu, Rational construction of highly tunable donor–acceptor materials based on a crystalline host–guest platform, Advanced Materials, 30 (2018) 1804715.
    [184] C. Zhang, B. Wang, W. Li, S. Huang, L. Kong, Z. Li, L. Li, Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption, Nature Communications, 8 (2017) 1138.
    [185] Z.H. Sun, A. Khurshid, M. Sohail, W.D. Qiu, D.R. Cao, S.J. Su, Encapsulation of dyes in luminescent metal-organic frameworks for white light emitting diodes, Nanomaterials, 11 (2021) 16. DOI: 10.3390/nano11102761.
    [186] X.J. Shi, J. Zhang, J.K. Liu, X.Q. Zhao, H.R. Wang, P.F. Wei, X.D. Zhang, X.L. Ni, H.H.Y. Sung, I.D. Williams, W.K. Ng, K.S. Wong, J.W.Y. Lam, L. Wang, H.L. Jin, B.Z. Tang, Hierarchical supramolecular self-assembly: fabrication and visualization of multiblock microstructures, Angew. Chem.-Int. Edit., 61 (2022) 9. DOI: 10.1002/anie.202211298.
    [187] C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W.H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang, C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance, ACS Applied Materials & Interfaces, 13 (2021) 16418-16426.
    [188] S. Maruthamuthu, J. Chandrasekaran, D. Manoharan, S. Karthick, H.J. Kim, Multilayer photoactive nanocolloidal PPy: PSS as a novel substitute for Pt free counter electrode in DSSC, Journal of Applied Polymer Science, 133 (2016).
    [189] J.M. Yassin, A.M. Taddesse, M. Sanchez-Sanchez, Room temperature synthesis of high-quality Ce (IV)-based MOFs in water, Microporous and Mesoporous Materials, 324 (2021) 111303.
    [190] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, Journal of the American Chemical Society, 60 (1938) 309-319.
    [191] C.-W. Kung, K. Otake, C.T. Buru, S. Goswami, Y. Cui, J.T. Hupp, A.M. Spokoyny, O.K. Farha, Increased electrical conductivity in a mesoporous metal–organic framework featuring metallacarboranes guests, Journal of the American Chemical Society, 140 (2018) 3871-3875.
    [192] S. Goswami, D. Ray, K.-i. Otake, C.-W. Kung, S.J. Garibay, T. Islamoglu, A. Atilgan, Y. Cui, C.J. Cramer, O.K. Farha, A porous, electrically conductive hexa-zirconium (IV) metal–organic framework, Chemical Science, 9 (2018) 4477-4482.
    [193] Y.S. Wang, Y.C. Chen, J.H. Li, C.W. Kung, Toward metal–organic‐framework‐based supercapacitors: room‐temperature synthesis of electrically conducting MOF‐based nanocomposites decorated with redox‐active manganese, European Journal of Inorganic Chemistry, 2019 (2019) 3036-3044.
    [194] Y.-S. Wang, J.-L. Liao, Y.-S. Li, Y.-C. Chen, J.-H. Li, W.H. Ho, W.-H. Chiang, C.-W. Kung, Zirconium-based metal–organic framework nanocomposites containing dimensionally distinct nanocarbons for pseudocapacitors, ACS Applied Nano Materials, 3 (2020) 1448-1456.
    [195] J.M. Yassin, A.M. Taddesse, M. Sanchez-Sanchez, Room temperature synthesis of high-quality Ce(IV)-based MOFs in water, Microporous and Mesoporous Materials, 324 (2021). DOI: 10.1016/j.micromeso.2021.111303.
    [196] M. Lammert, C. Glissmann, H. Reinsch, N. Stock, Synthesis and Characterization of New Ce(IV)-MOFs Exhibiting Various Framework Topologies, Crystal Growth & Design, 17 (2017) 1125-1131. DOI: 10.1021/acs.cgd.6b01512.
    [197] M.A. Chougule, D.S. Dalavi, S. Mali, P.S. Patil, A.V. Moholkar, G.L. Agawane, J.H. Kim, S. Sen, V.B. Patil, Novel method for fabrication of room temperature polypyrrole-ZnO nanocomposite NO2 sensor, Measurement, 45 (2012) 1989-1996. DOI: 10.1016/j.measurement.2012.04.023.
    [198] S. Navale, A. Mane, A. Ghanwat, A. Mulik, V. Patil, Camphor sulfonic acid (CSA) doped polypyrrole (PPy) films: measurement of microstructural and optoelectronic properties, Measurement, 50 (2014) 363-369.
    [199] W. Liang, H. Chevreau, F. Ragon, P.D. Southon, V.K. Peterson, D.M. D'Alessandro, Tuning pore size in a zirconium–tricarboxylate metal–organic framework, CrystEngComm, 16 (2014) 6530-6533.
    [200] C. Ardila-Suárez, H. Alem, V.G. Baldovino-Medrano, G.E. Ramírez-Caballero, Synthesis of ordered microporous/macroporous MOF-808 through modulator-induced defect-formation, and surfactant self-assembly strategies, Physical Chemistry Chemical Physics, 22 (2020) 12591-12604.
    [201] C. Montella, Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. Influence of charge transfer kinetics and ohmic potential drop, Journal of Electroanalytical Chemistry, 518 (2002) 61-83. DOI: https://doi.org/10.1016/S0022-0728(01)00691-X.
    [202] B.A. Johnson, A. Bhunia, H. Fei, S.M. Cohen, S. Ott, Development of a UiO-type thin film electrocatalysis platform with redox-active linkers, Journal of the American Chemical Society, 140 (2018) 2985-2994.
    [203] Y.-N. Chang, C.-H. Shen, C.-W. Huang, M.-D. Tsai, C.-W. Kung, Defective metal–organic framework nanocrystals as signal amplifiers for electrochemical dopamine sensing, ACS Applied Nano Materials, 6 (2023) 3675-3684.
    [204] P. Si, H. Chen, P. Kannan, D.-H. Kim, Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes, Analyst, 136 (2011) 5134-5138.
    [205] M. Asif, A. Aziz, H. Wang, Z. Wang, W. Wang, M. Ajmal, F. Xiao, X. Chen, H. Liu, Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid, Microchimica Acta, 186 (2019) 1-11.
    [206] A. Aziz, M. Asif, M. Azeem, G. Ashraf, Z. Wang, F. Xiao, H. Liu, Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells, Analytica Chimica Acta, 1047 (2019) 197-207.
    [207] Y. Yang, M. Li, Z. Zhu, A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid, Talanta, 201 (2019) 295-300.
    [208] B. Demirkan, S. Bozkurt, A. Şavk, K. Cellat, F. Gülbağca, M.S. Nas, M.H. Alma, F. Sen, Composites of bimetallic platinum-cobalt alloy nanoparticles and reduced graphene oxide for electrochemical determination of ascorbic acid, dopamine, and uric acid, Scientific Reports, 9 (2019) 1-9.
    [209] S. Immanuel, T. Aparna, R. Sivasubramanian, A facile preparation of Au—SiO2 nanocomposite for simultaneous electrochemical detection of dopamine and uric acid, Surfaces and Interfaces, 14 (2019) 82-91.
    [210] S. Kogularasu, M. Akilarasan, S.-M. Chen, T.-W. Chen, B.-S. Lou, Urea-based morphological engineering of ZnO; for the biosensing enhancement towards dopamine and uric acid in food and biological samples, Materials Chemistry and Physics, 227 (2019) 5-11.
    [211] S. Balu, S. Palanisamy, V. Velusamy, T.C. Yang, E.-S.I. El-Shafey, Tin disulfide nanorod-graphene-β-cyclodextrin nanocomposites for sensing dopamine in rat brains and human blood serum, Materials Science and Engineering: C, 108 (2020) 110367.
    [212] F. Shahzad, A. Iqbal, S.A. Zaidi, S.-W. Hwang, C.M. Koo, Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter, Journal of Industrial and Engineering Chemistry, 79 (2019) 338-344.
    [213] Y. Huang, Y. Tang, S. Xu, M. Feng, Y. Yu, W. Yang, H. Li, A highly sensitive sensor based on ordered mesoporous ZnFe2O4 for electrochemical detection of dopamine, Analytica Chimica Acta, 1096 (2020) 26-33.
    [214] K. Zhou, D. Shen, X. Li, Y. Chen, L. Hou, Y. Zhang, J. Sha, Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine, Talanta, 209 (2020) 120507.
    [215] X. Sun, L. Zhang, X. Zhang, X. Liu, J. Jian, D. Kong, D. Zeng, H. Yuan, S. Feng, Electrochemical dopamine sensor based on superionic conducting potassium ferrite, Biosensors and Bioelectronics, 153 (2020) 112045.
    [216] Y. Huang, Y. Zhang, D. Liu, M. Li, Y. Yu, W. Yang, H. Li, Facile synthesis of highly ordered mesoporous Fe3O4 with ultrasensitive detection of dopamine, Talanta, 201 (2019) 511-518.
    [217] M.K. Alam, M.M. Rahman, M.M. Rahman, D. Kim, A.M. Asiri, F.A. Khan, In-situ synthesis of gold nanocrystals anchored graphene oxide and its application in biosensor and chemical sensor, Journal of Electroanalytical Chemistry, 835 (2019) 329-337.
    [218] K. Nishimura, T. Ushiyama, N.X. Viet, M. Inaba, S. Kishimoto, Y. Ohno, Enhancement of the electron transfer rate in carbon nanotube flexible electrochemical sensors by surface functionalization, Electrochimica Acta, 295 (2019) 157-163.
    [219] Y.Z. Keteklahijani, F. Sharif, E.P. Roberts, U. Sundararaj, Enhanced sensitivity of dopamine biosensors: An electrochemical approach based on nanocomposite electrodes comprising polyaniline, nitrogen-doped graphene, and DNA-functionalized carbon nanotubes, Journal of The Electrochemical Society, 166 (2019) B1415.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE