簡易檢索 / 詳目顯示

研究生: 蔡國騰
Tsai, Kuo-Teng
論文名稱: 流道型狀對質子交換膜燃料電池性能影響之研究
A study on the effect of the channel geometry for performance in PEMFC
指導教授: 楊玉姿
Yang, Yue-Tzu
陳朝光
Chen, Chao-kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 131
中文關鍵詞: 波型流道質子交換膜燃料電池數值模擬壓降受限制的
外文關鍵詞: waved flow channel, PEMFC, numerical simulation, pressure drop, restricted.
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的利用實驗以及數值模擬的方式,探討以新型波型流道取代一般平面式的流道設計對於質子交換膜燃料電質的影響。
    在實驗的過程中,開路電壓值量測出來的大小為0.85伏特。實驗結果可以發現在波型流道中陽極端與陰極端流量比為1:3可以得到較佳的性能。兩者流量比超過1:3時,空氣的流量的增加反而讓燃料電池的性能降低。一般燃料電池的操作電壓為0.6伏特,而在波型流道設計最佳的操作電壓約為0.4伏特。
    另一方面,利用數值模擬的方式研究波型流道內的速度場、濃度場以及燃料電池性能。研究的結果顯示波型流道的設計有益於提升內部的質量傳輸,並改善值子交換膜燃料電池的性能。這是由於受到流道幾何形狀改變產生較強的強制對流影響,使得更多的反應氣體能夠流入擴散層。與傳統的平行式流道比較,當波型流道的波峰與擴散層間的間隙變小時,會有更顯著的影響。在波型流道與擴散層間的間隙變小的同時,也讓燃料電池內的壓降增加。當其間隙大小大於0.3可以獲得較為理想的壓降影響。整體來看,波型流道的設計可以讓燃料電池比一般的直線型流道的性能提升約30%的功率密度。
    在受限制的流場空間中,討論不同的流道設計對於燃料電池性能、壓降以及熱傳的影響。在方形凸塊設計中,兩個以及四個方形凸塊的設計比平行式流道多消耗了8.75%的氧氣。在燃料電池的性能表現,也較其他的設計來的好。同時,可以發現到流道到凸塊的排列方式也會對於燃料電池的性能產生明顯的影響。在熱傳方面,侷限的空間下的條件下,流道內的方形凸塊可以有效改善總體的熱傳效果,其增益約為20-30%,但方形凸塊數量有一定的上限。

    The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC) by the experiment and numerical simulation.
    In the experiments, the open circuit voltage (OCV) is measured about 0.85V. The results show that the better flow ratio for anode to cathode is closed to 1:3 in the wavelet channel. In the high cathode flow rate, the performance decays when the ratio is over 1:3. At a general condition, the operation voltage is about 0.6 V, but the better operator voltage of wavelet flow channel is about 0.4V.
    The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer, and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced convection, and causes the more reactant gas flow into the gas diffusion layer (GDL). The performance which was compared to a conventional straight gas flow channel increases significantly with the small gap size when it is smaller than 0.5 in the waved flow channel. The pressure drop is increased as the gap size becomes smaller, and the wave number decreases.δ(gap size)>0.3 has a reasonable pressure drop. Consequently, compared to a conventional PEMFC, the waved flow channel improves approximately 30% power density.
    In the restricted flow field, the performance, the pressure drop and the heat transfer are discussed for the different design. For the block design, the oxygen consumed fraction is about 8.75% greater for the 2 and 4-block channel in comparison with the straight channel for the voltage of 0.5V. For the performance, it is shown that 2-block and 4-block design are better than the others. It is signature that the arrangement of the block in the flow channel affects the performance of the fuel cell. For heat transfer, the blocks in the flow channel can improve about 20-30%, but the number of the blocks in the flow channel exist the upper limit.

    中文摘要………………………………………………………………………I Abstract..............................................III 誌謝...................................................V 目錄...................................................VII 圖目錄..................................................X 表目錄..................................................XV 符號說明................................................XVI 第一章 緒論.............................................1 1-1 前言................................................1 1-2 文獻回顧.............................................2 1-3研究動機與目的.........................................8 1-4本文架構..............................................8 第二章 波型流道設計之實驗分析..............................11 2-1 PEMFC基本結構及原理...................................11 2-2 流道設計概念..........................................15 2-3 質子交換膜燃料電池實驗準備.............................16 2-4 雙極板流道設計.......................................18 2-5 流道板測試及操作條件..................................19 2-6 可靠度測試...........................................19 第三章 波型流道質子交換膜燃料電池性能測試結果..................30 3-1 波型流道OCV測試.................................30 3-2 不同流率下I-V曲線的影響.............................31 3-3 不同流率下功率密度特性影響............................33 第四章 燃料電池模擬理論分析..................................46 4-1 流場空間與基本假設.....................................46 4-2 統御方程式.........................................47 4-3 二維模組邊界條件.......................................50 4-4 二維模組邊界條件.......................................51 第五章 數值方法.........................................56 5-1 概述................................................56 5-2 格點位置的配置.......................................57 5-3 座標轉換............................................58 5-4 統御方程式的離散.....................................59 5-5 壓力修正方程式........................................64 5-6 差分方程式的解法.....................................67 5-7 收斂條件............................................68 5-8 數值分析流程.........................................68 第六章 波型流道數值模擬結果討論............................76 6-1 網格獨立測試........................................76 6-2 速度場分析..........................................76 6-3 濃度場分析..........................................78 6-4 性能曲線分析........................................79 6-5 壓降分析............................................81 第七章 三維侷限流道內流道設計分析.........................99 7-1 網格獨立測試........................................99 7-2 速度及氧氣濃度分佈分析...............................99 7-3 燃料電池性能及壓降分析.............................100 7-4 熱傳效益分析.....................................102 第八章 結論及未來展望................................121 8.1 本文總結........................................121 8.2 未來之展望......................................123 參考文獻............................................124 著作...............................................130

    [1] Yi, J.S. and Nguyen, T.V., Multicomponent Transport in Poous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors, Journal of The Electrochemical Society 146(1) (1999) 38-45.
    [2] He, W., Yi, J.S. and Nguyen, T.V., Two-phase Flow Model of the Cathode of PEM Fuel Cell Using Interdigitated Flow Fields, AICHE Journal 46(10) (2000) 2053-2064.
    [3] Singh, D., Lu, D.M., and Djilali, N., A two-dimensional analysis of mass transport in proton exchange membrane fuel cells, International Journal of Engineering Science 39(3) (1999) 431-452.
    [4] Kazim, A., Modeling of Performance of PEM Fuel Cell with Conventional and Interdigitated Flow Field, Journal of Applied Electrochemistry 29 (1999) 1409-1416.
    [5] Gurau, V., Two-dimensional model for proton exchange membrane fuel cells, AIChE Journal 44(11) (1998) 2410-2422.
    [6] Dagan, G., Flow and Transport in Porous Formations, Springer-Verlag, New York 1989.
    [7] Dagan, G., The generalization of Darcy’s law for non-uniform flows, Water Resources Research 15 (1979) 1.
    [8] Wang, Z.H., Wang, C.Y., and Chen, K.S., Two-phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells, Journal of Power Sources 94 (2001) 40-50.
    [9] Rowe, A. and Li, X., Mathematical modeling of proton exchange membrane fuel cells, Journal of Power Sources 102 (2001) 82-96.
    [10] You, L., and Liu, H., A Two-phase Flow and Transport Model for the Cathode of PEM Fuel Cells, International Journal of Heat Mass Transfer 45 (2002) 2277-2287.
    [11] Yan, W.M., Soong, C.Y., Chen, Falin, and Chu, H.S, Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells, Journal of Power Sources 125 (2004) 27-39.
    [12] Tüber, K., Oedegaard, A., Hermann, M., and Hebling, C., Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells, Journal of Power Sources 131 (2004) 175-181.
    [13] Dutta, S., Shimpalee, S., and Van Zee, J.W., Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, International Journal of Heat and Mass Transfer 44 (2001) 2029-2042.
    [14] Hontañón, E., Escudero, M.J., Bautista, C., Garc&inodot, P.L., ´a-Ybarra, and Daza, L., Optimisation of flow-field in polymer electrolytemembrane fuel cells using computational fluid dynamics techniques, Journal of Power Sources 86 (1/2) (2000) 363 - 368.
    [15] Kornyshev, A.A., and Kulikovsky, A.A., Characteristic length of fuel and oxygen consumption in feed channel of polymer electrolyte fuel cells, Electrochimica Acta 46 2001(2001) 4389-4395.
    [16] Dohl,e H., Kornyshev A.A., Kulikovsky A.A., Mergrl. J., and Stolten, D., The Current Voltage Plot of PEM Fuel Cell with Long Feed Channels, Electrochemistry Communications 3 (2001) 73-80.
    [17] Jordan, L.R., Shukla, A.K., Behrsing, T., Avery, N.R., Muddle, B.C., and Forsyth, M., Diffusion layer parameters influencing optimal fuel cell performance, Journal of Power Sources 86(1/2) (2000) 250-254.
    [18] Broka, K.. and Ekdunge, P., Modeling the PEM fuel cell cathode, Journal of Applied Electrochemistry 27(3) (1997) 281-289.
    [19] Liu, H.C., Yan, W.M., Soong, C.Y., and Chen Falin, Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell, Journal of Power Sources 142(2005) 125-133.
    [20] Soong, C.Y., Yan, W.M., Tseng, C.Y., Liu, H.C., Chen, Falin, and Chu, H.S., Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels, Journal of Power Sources 143(2005) 36-47.
    [21] Yan, W.M., Chen, Falin, Wu, H.Y., Soong, C.Y., and Chu, H.S., Analysis of thermal and water management with temperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells, Journal of Power Sources 129(2004) 127-137.
    [22] Yan, W.M., Yang, C.H., Soong, C.Y., Chen Falin, and Mei S.C., Experimental studies on optimal operating conditions for different flow fielddesigns of PEM fuel cells, Journal of Power Sources 160 (2006) 284-292.
    [23] Yan, W.M., Chen, C.Y., Mei, S.C., Soong, C.Y., and Chen Falin, Effects of operating conditions on cellperformance of PEM fuel cells with conventional orinterdigitated flow field, Journal of Power Sources 162(2006) 1157-1164.
    [24] Kuo, J.K., and Chen, C.K., A novel Nylon-6–S316L fiber compound material for injection molded PEM fuel cell bipolar plates, Journal of Power Sources 162 (2006) 207-214.
    [25] Kuo, J.K., and Chen, C.K., Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle, Journal of Power Sources 162 (2006) 1122-1129.
    [26] Kuo, J.K., and Chen, C.K., The effects of buoyancy on the performance of a PEM fuel cell with a wave-like gas flow channel design by numerical investigation, International Journal of Heat and Mass Transfer 50 (2007) 4166-4179.
    [27] Hsieh, S.S., Yang, S.H., Kuo, J.K., Huang, C.F., and Tsai, H.H., Study of operational parameters on the performance of micro PEMFCs with different flow fields, Energy Conversion and Management 47 (2006) 1868-1878.
    [28] Shimpalee, S., Greenway, S., Van Zee, J.W., The impact of channel path length on PEMFC flow-field design, Journal of Power Sources 160 (2006) 398-406.
    [29] Kjelstrup, S., Coppens, M.O., Pharoah, J.G., and Pfeifer, P., Nature-inspired energy and material efficient design of a polymerelectrolyte membrane fuel cell, Energy & Fuels 24(2010) 5097-5108.
    [30] Wang, C.T., Hu, Y.C., and Zheng, P.L., Novel biometric flow slab design for improvement of PEMFC performance, Applied Energy 87 (2010) 1366-1375.
    [31] Chapman, A., and Mellor, I., Development of Biomimetic_flowfield plates for PEM fuel cells, The Eighth Grove Fuel Cell Symposium London, September 2003, 24-26.
    [32] Kloess, J.P., Wang, X., Liu, J., Shi, Z., and Guessous, L., Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells, Journal of Power Sources 188 (2009) 132-140.
    [33] Roshandel, R., Arbab, F., and Karimi Moghaddam, G., Simulationof an innovative flow-field design based on a bio inspired pattern for PEM fuel cells, Renewable Energy 41 (2012) 86-95.
    [34] Hu, Peng, Peng, Linfa, Zhang, Weigang, and Lai, Xinmin, Optimization design of slotted-interdigitated channel for stamped thin metal bipolar plate in proton exchange membrane fuel cell, Journal of Power Sources 187(2009) 407-414.
    [35] Hu, Mingruo, Gu, Anzhong, Wang, Minghua, Zhu, Xinjian, and Yu, Lijun, Three dimensional, two phase flow mathematical model for PEM fuel cell: Part I. Model development, Conversion and Management 45 (2004) 1861-1882.
    [36] Hu, Mingruo, Gu, Anzhong, Wang, Minghua, Zhu, Xinjian, and Yu, Lijun, Three dimensional, two phase flow mathematical model for PEM fuel cell: Part II. Analysis and discussion of the internal transport mechanisms, Conversion and Management 45 (2004) 1883-1916.
    [37] Manso. A.P., Marzo. F.F., Barranco. J., Garikano. X., and Garmendia Mujika, M., Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell, A review, International Journal of Hydrogen Energy 37 (2012) 15256-15287.
    [38] Bernardi, D.M., and Verbrugge, M.W., A mathematical model of the solid-polymer-electrolyte fuel cell, Journal of The Electrochemical Society 139 (1992) 2477-2491.
    [39] Springer, T.E., Zawodzinski, T.A., and Gottsfeld, S., Polymer electrolyte fuel cell model, Journal of The Electrochemical Society 150 (2003) 2334-2341.
    [40] Patankar, S.V., Numerical Heat Transfer, Hemisphere, Washington DC, 1980.

    下載圖示 校內:2015-07-29公開
    校外:2015-07-29公開
    QR CODE