簡易檢索 / 詳目顯示

研究生: 梁逸筑
Liang, I-Chu
論文名稱: 新穎金屬硫族化合物的合成及傳輸與磁性性質
Syntheses, Transport and Magnetic Properties of New Metal Chalcogenides
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 82
中文關鍵詞: 金屬硫碘族化合物金屬硫族化合物熱導率同系現象化合物
外文關鍵詞: metal chalcoiodides, metal chalogenides, thermal conductivity, homologus series
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用助融劑長晶,成功合成出兩個新穎金屬硫鹵族合金化合物分別標記為化合物1、2以及三個新穎金屬硫族化合物,分別是化合物3、4、5. 以下分兩個章節介紹。章節一包含化合物1和2。此兩個化合物利用固態反應於400 ºC,單晶資料如下:Bi2CuISe3 (1),空間群為 monoclinic, C2/m, a = 14.243(2) Å, b = 4.1937(7) Å, c = 14.647(2) Å,  = 116.095(2)°, V = 785.7(2) Å3, Z = 4以及化合物2, Bi6Cu3S10I (2), 空間群為orthorhombic, Pnma, a = 17.476(2) Å, b = 4.0078(4) Å, c = 27.391(2) Å, V = 1918.5(3) Å3, and Z = 4。 化合物1由兩個交替出現的層狀組合而成一個三維結構,其層狀由BiSe5的金字塔型五面體、BiSe4I2的八面體、CuSe4四面體和CuSe2I2四面體所組成。化合物2則由BiS5金字塔型五面體、BiS6八面體、BiS8多面體以及CuS4四面體組成一個新穎的三維孔洞結構,再由碘離子(I)在填充在孔洞中穩定結構。化合物1和2的電子結構計算都指出,能隙由鉍和硫族元素所共主導。而Cu離子的d軌域和I的p軌域則主要影響價帶. 經由紫外光/可見光反射光譜儀鑑定化合物1和2的光學能隙分別為0.68 eV和0.72 eV。化合物1為一個p-type半導體,其在300–425 K的席貝克係數(S)為460–575 V/K,電導度()和熱導度在425 K分別為0.02 S/cm和0.22 W/mK。
    章節二包含化合物3、4、5。此三個化合物利用助融長晶法反應於900 ºC,其空間群皆為orthorhombic Cmcm並且可被歸納成MnN–1(Gd2-xInx)SN+2 (N = 3, 4, and 5)其單晶資料如下:Mn2GdInS5 (3), a = 3.789(1) Å, b = 12.411(1) Å, c = 15.489(1) Å; Mn3Gd2S6 (4), a = 3.778(1) Å, b = 12.505(2) Å, c = 19.114(2) Å; Mn4Gd2S7 (5), a = 3.769(1) Å, b = 12.466(2) Å, c = 22.289(3) Å. 化合物3、4、5經由調整MnS單元形成一系列同系現象化合物,並且沿c軸單一方向的增加軸長,導致層狀結構逐漸變厚,其結構完整的對應lillianite系列(N1, N2L)的3, 3L, 4,4L and 5, 5L。其中化合物5是首次被發現的lillianite系列的5, 5L結構。Mn2GdInS5 (3)在10 K展現反鐵磁性(AFM)排序,其Weiss constants ()為 0.76 K。 Mn2Gd1.5In0.5S5 (3a)和化合物3等結構,其反鐵磁性(AFM)排序為12 K,其Weiss constants ()也提高到 6.06 K。 Mn4Gd2S7 (5)在一系列化合物中擁有最厚的層狀並且展現了反鐵磁性行為在70 K,其值為 40.25 K。化合物5中雖然含有少量的-Gd2S3,但其反鐵磁性行為已被證實發生在大約4 K,估計對於化合物5於70K的反鐵磁性行為沒有影響。化合物3、4、5的能隙分別為1.66 eV、1.75 eV、1.44 eV。

    We have discovered five new structures of chalcogenides in this reseach, which compounds are present in two parts according to their physical properties. Part one includes two new metal chalcoiodides were synthesized by solid-state reactions at 400 ºC. Crystal data: Bi2CuISe3 (1), monoclinic, C2/m, a = 14.243(2) Å, b = 4.1937(7) Å, c = 14.647(2) Å,  = 116.095(2)°, V = 785.7(2) Å3, and Z = 4; Bi6Cu3S10I (2), orthorhombic, Pnma, a = 17.476(2) Å, b = 4.0078(4) Å, c = 27.391(2) Å, V = 1918.5(3) Å3, and Z = 4. Compound 1 adopts a three-dimensional structure formed by two alternative layers, which consist of BiSe5 square pyramids, BiSe4I2 octahedra, CuSe4 tetrahedra, and CuSe2I2 tetrahedra. Compound 2 possesses a new open framework made up of BiS5 square pyramides, BiS6 octahedra, BiS8 polyhedra, and CuS4 tetrahedra where I anions are encapsulated within the tunnels. Both electronic structures reveal that the hybridization of bismuth and chalcogenide orbitals dominates the bandgaps. The Cu d and I p states contribute to the top of valence bands in 1 and 2. The optical bandgaps determined by the diffuse reflectance spectra are 0.68 eV and 0.72 eV for 1 and 2, respectively. 1 is a p-type semiconductor with high Seebeck coefficients (S) of 460–575 V/K in the temperature range of 300–425 K. The electrical conductivity () is 0.02 S/cm and thermal conductivity is 0.22 W/mK at 425 K.
    Part two includes three new metal chalcogenides identified in MnN–1(Gd2-xInx)SN+2 with N = 3, 4, and 5 via a KBr flux-growth synthesis. All compounds are crystallized in the same space group of orthorhombic Cmcm with cell constants: Mn2GdInS5 (3), a = 3.789(1) Å, b = 12.411(1) Å, c = 15.489(1) Å; Mn2Gd1.5In0.5S5 (3a), a = 3.790(1) Å, b = 12.462(2) Å, c = 15.612(2) Å; Mn3Gd2S6 (4), a = 3.778(1) Å, b = 12.505(2) Å, c = 19.114(2) Å; Mn4Gd2S7 (5), a = 3.769(1) Å, b = 12.466(2) Å, c = 22.289(3) Å. Compounds 3–5 form a homologus series through the modulation of MnS unit. These structures resprent a complete system of the corresponding lillianites (N1, N2L) of 3, 3L, 4,4L and 5, 5L. The gradually wider slabs formed in the series result in a monotonic increase along the c dimensions from 3 to 5. Crystal 5 is the first to achieve a predicted structure of 5, 5L. Mn2GdInS5 (3) displays a weak antiferromagnetic (AFM) ordering at 10 K and the Weiss constants () of 0.76 K. Mn2Gd1.5In0.5S5 (3a), an isostructure of 3, shifts the AFM transition tempeature to 12 K and possess a slightly larger  constant of 6.06 K. Mn4Gd2S7 (5), featuring the thickest slabs in this series, shows a significant antiferromagnetic behavior beginning at high tempeature 70 K and has a largest  constant of 40.25 K. A small amount of impurity -Gd2S3 with AFM transition temperature around 4 K was characterized in the sample 5, which do not interfere with the magnetic ordering of 5 at much higher temperature. These magnetic chalcogenides display band gaps of 1.66 eV for 3, 1.75 eV for 3a, and 1.44 eV for 5.

    Abstract I Abstract in Chinese III Acknowledgement IV Table of Contents V List of Figures VII List of Table XII Part Ⅰ: Syntheses and Characterization of New Metal Chalcoiodides Bi2CuISe3 (1) and Bi6Cu3S10I (2) 1 Chapter 1. Introduction 2 Chapter2. Experimential Section 9 2.1 Syntheses 9 2.2 Single Crystal Structural Analysis 9 2.3 Powder X-ray Structural Analysis 13 2.4 Differential Thermal Analysis 13 2.5 UV-Vis-NIR Spectroscopy 13 2.6 Electronic Structure Calculation 14 2.7 Thermoelectric Measurement 14 Chapter 3: Result and Discussion 15 3.1 Structural description 15 3.2 Powder X-ray Diffraction Analysis 20 The powders of 1 and 2 are also 21 3.3 Differential Thermal Analysis 21 3.4 UV-Vis-NIR Spectroscopy 25 3.5 Electronic band structure 25 3.6 Thermoelectric properties 28 Chapter 4. Conclusions 29 References 30 Part Ⅱ:New Metal Chalcogenides Found in MnN-1(Gd2-xInx)SN+2 (N = 3, 4, 5): Syntheses, Structures, and Magnetic Properties 33 Chapter 1. Introduction 34 Chapter2. Experimential Section 39 2.1 Syntheses 39 2.2 Single Crystal X-ray Diffraction Analyses 40 2.3 Electron Microscopy 44 2.4 Powder X-ray Diffraction 44 2.5 UV-vis-NIR Spectroscopy Measurements 44 2.6 Magnetic Susceptibility Measurements 45 Chapter 3. Result and Discussion 45 3.1 Structure Description 45 3.2 Powder X-ray Diffraction Analysis 51 3.3 Energy Band Gap. 55 3.4 Magnetic Properties. 55 Chapter 4: Conclusions 60 References 62 Appendix 65

    1. Herrmans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Science 2008, 321, 554.
    2. Biswas, K; He, J.; Blum, I. D.; Wu, C. I.;Hogan, T. P.; Seidman, D. N.; Darvid, V. P.; Kanatzidis, M. G. Nature 2012, 489, 414.
    3. Lai, W. H.; Haynes, A. S.; Frazer, L.; Chang, Y. M.; Liu, T. K.; Lin, J. F.; Liang, I. C.; Sheu, H. S.; Ketterson, J. B.; Kanatzidis M. G.; Hsu K. F. Chem. Mater. 2015, 27, 1316.
    4. Poudeu, P. F. P.; Takas, N.; Anglin, C.; Eastwood, J.; Rivera, A. J. Am. Chem. Soc. 2010, 132, 5751.
    5. Tan, G.; Zhao, L. D.; Shi, F.; Doak, J. W.; Lo, S. H.; Sun, H.; Wolverton, C.; Dravid, V. P.; Uher, C.; Kanatzidis M. G. J. Am. Chem. Soc. 2014, 136, 7006.
    6. Martin, J. D.; Dattelbaum, A. M.; Thornton, T. A.; Sullivan, R. M.; Yang, J.; Peachey, M. T. Chem. Mater. 1998, 10, 2699.
    7. Cario, L.; Kabbour, H.; Meerschaut, A. Chem. Mater. 2005, 17, 234.
    8. Kabbour, H.; Cario, L.; Danot, M.; Meerschaut, A. Inorg. Chem. 2006, 45, 917.
    9. Kabbour, H.; Cario, L. Inorg. Chem. 2006, 45, 2713.
    10. Wang, L.; Hung, Y. C.; Hwu, S. J.; Koo, H. J.; Whagbo, M. H. Chem. Mater. 2006, 18, 1219.
    11. Wang, L.; Hwu, S. J. Chem. Mater. 2007, 19, 6212.
    12. Poudeu, P. F. P.; Söhnel, T.; Ruck, M. Z. Anorg. Allg. Chem. 2004, 630, 1276.
    13. Poudeu, P. F. P.; Ruck, M. Z. Anorg. Allg. Chem. 2008, 634, 475.
    14. Ruck, M.; Poudeu, P. F. P. Z. Anorg. Allg. Chem. 2008, 634, 482.
    15. Pfitzner, A.; Zimmerer, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 982.
    16. Pfitzner, A. Chem. Eur. J. 1997, 3, 2032.
    17. Bräu, M. F.; Pfitzner, A. Angew. Chem. Int. Ed. Engl. 2006, 45, 4464.
    18. Wibowo, A. C.; Malliakas, C. D.; Chung, D. Y.; Im, J.; Freeman, A. J.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 11875.
    19. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’quinn, B. Nature 2001, 413, 597.
    20. Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science 2004, 303, 818.
    21. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D. Science 2008, 320, 634.
    22. Vining, C. B. Nat. Mater. 2009, 8, 83.
    23. DiSalvo, F. J. Science 1999, 285, 703.
    24. CRC Handbook of Thermoelectrics; Rowe, D. M., Ed.; CRC Press: Boca Raton, FL, 1995.
    25. Adam, A. Mater. Res. Bull. 2007, 42, 1986.
    26. Tritt, T. M. Science, 1999, 283, 804.
    27. Nada, Y.; Ohba, S.; Sato, S.; Saito, Y.; Acta Cryst. 1983, B39, 31.
    28. Kulbachinskii, V. A.; Kytin, V. G.; Lavrukhina, Z. V.; Kuznetsov, A. N.; Shevelkov, A. V. Semiconductors 2010, 44, 1548.
    29. Kulbachinskii, V. A.; Kytin, V. G.; Kudryashov, A. A.; Kuznetsov, A. N.; Shevelkov, A. V. J. Solid State Chem. 2012, 193, 154.
    30. Sankar, R.; Muthuselvam, P.; Butler, C. J.; Liou, S. C.; Chen, B. H.; Chu, M. W.; Lee, W. L.; Lin, M. T.; Jayavel, R.; Chou, F. C. CrystEngComm 2014, 16, 8678.
    31. Derakhshan, S.; Assoud, A.; Taylor, N. J. Kleinke, H.; Intermetallics 2006, 14, 198.
    32. Mrotzek, A.; Chung, D.Y.; Hogan, T.; Kanatzidis, M. G. J. Mater. Chem., 2000, 10, 1667.
    33. Chung, D. Y.; Choi, K. S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M. G. Chem. Mater. 1997, 9, 3060.
    34. Chung, D. Y.; Hogan, T. P.; Rocci-Lane, M.; Brazis, P.; Ireland, J. R.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. G. J. Am. Chem. Soc, 2004, 126, 6414
    35. Androulakis, J.; Hsu, K. F.; Kong, H.; Uher, C.; D’Angelo, J. J.; Downey, A.; Hogan, T.; Kanatzidis, M. G. Adv. Mater. 2006, 18, 1170.
    36. Prokofieva, L. V.; Pshenay-Severin, D. A.; Konstantinov, P. P.; Shabaldin, A. A. Semiconductors, 2009, 43, No. 8.
    37. Chung, D. Y.; Loo, S.; Uher, C.; Chen, W.; Dyck, J. S.; Kanatzidis, M. G. Chem. Mater. 2012, 24, 1854.
    38. Kim, J. H.; Chung, D. Y.; Bilc, D.; Loo, S.; Short, J.; Subhendra, D.; Mahanti.; Hogan, T.; Mercouri G.; Kanatzidis. Chem. Mater. 2005, 17, 3606.
    39. Korkosz, R. J.; Chasapis T. C.; Lo, S.H.; Doak, J. W.; Kim, Y. J.; Wu, C. I.;Hatzikraniotis , E.; Hogan, T. P.; Seidman, David. N.; Wolverton, C; Dravid, V. P.; Kanatzidis , M. G. J. Am. Chem. Soc. 2014, 136, 3225.
    40. Burdett, J. K.; Eisenstein, O. Inorg. Chem. 1992, 31, 1758.
    41. Ohmasa, M.; Mariolacos, K. Acta Cryst. 1974, B30, 2640.
    42. Balić-Žunić, T.; Mariolacos, K.; Friese, K.; Makovicky, E. Acta Cryst. 2005, B61, 239.
    43. Heerwig, A.; Thybaut, C. L. J.; Ruck, M. Z. Anorg. Allg. Chem. 2010, 636, 2433.
    44. Heerwig, A.; Isaeva, A.; Ruck, M. Z. Anorg. Allg. Chem. 2011, 637, 1131.
    45. Heerwig, A.; Müller, U.; Nitsche, F.; Ruck, M. Z. Anorg. Allg. Chem. 2012, 638, 1462.
    46. Assoud, A.; Thomas, S.; Sutherland, B.; Zhang, H.; Tritt, T. M.; Klenike, H. Chem. Mater. 2006, 18, 3866.
    47. Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Nature Mater. 2012, 11, 422.
    48. Nilges, T.; Lange, S.; Bawohl, M.; Deckwart, J. M.; Janssen, M.; Wiemhöfer, H. D.; Decourt, R.; Chevalier, B.; Vannahme, J.; Eckert, H.; Weihrich, R. Nature Mater. 2009, 8, 101.
    49. APEX 2 version 2013.10-0; Bruker Analytical X-ray Systems: Madison, WI, 2010.
    50. Sheldrick, G. M. SHELXTL-Plus NT crystallographic system, version 6.1; Bruker Analytical X-ray Systems: Madison, WI, 2010.
    51. McCusker, L. B.; Von Dreele, R. B.; Cox, D. E.; Louer, D.; Scardi, P. J. Appl. Cryst. 1999, 32, 36.
    52. (a) Tandon, S. P.; Gupta, J. P. Phys. Status Solidi 1970, 38, 363. (b) McCarthy, T. J.; Ngeyi, S. P.; Liao, J. H.; Degroot, D. C.; Hogan,T.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1993, 5, 331. (c) Kuo, S. M.; Chang, Y. M.; Chung, In; Jang, J. I.; Her, B, H.; Yang, S. H. Ketterson, J. B.; Kanatzidis, M. G., Hsu, K. F. Chem. Mater. 2013, 25, 2427.
    53. Bilc, D. I.; Orlando, R.; Shaltaf, R.; Rignanese, G. M.; Iniguez, J.; Ghosez, Ph. Phys. Rev. B 2008, 77, 165107.
    54. Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V.R.; Zicovich-Wilson, C. M. Z. Kristallogr. 2005, 220, 571.
    55. Wu, Z.; Cohen, R. E. Phys. Rev. B 2006, 73, 235116.
    56. Becke, A. D. J. Chem. Phys. 1996, 104, 1040.
    57. Peintinger, M. F.; Oliveira, D. V.; Bredow, T. J. Comput. Chem. 2013, 34, 451.
    58. Doll, K.; Stoll, H. Phys. Rev. B 1998, 57, 4327.
    59. Weihrich, R.; Anusca, I. Z. Anorg. Allg. Chem. 2006, 632, 335.
    60. Braun, T. P.; Disalvo, F. J. Acta Cryst. 2000, C56, e1.
    61. Baranov, A. I.; Kloo, L.; Olenev, A. V.; Popovkin, B. A.; Romanenko, A. I.; Shevelkov, A. V. J. Am. Chem. Soc. 2001, 123, 12375.
    62. Baranov, A. I.; Kloo, L.; Olenev, A. V.; Popovkin, B. A.; Romanenko, A. I. Inorg. Chem. 2003, 42, 2988.
    63. Kyono, A; Kimata, M. Am.Mineral. 2005, 90, 162.
    64. Bilc, D. I.; Kyratsi, T.; Chung, D. Y.; Larson, P.; Mahanti, S. D.; Kanatzidis, M. G. Phys. Rev. B 2005, 71, 085116.
    65. (a) Heyd, J.; Scuseria, G.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. (b) Dufton, J. T. R.; Walsh, A.; Panchmatia, P. M.; Peter, L. M.; Colombara, D.; Islam, M. S. Phys. Chem. Chem. Phys.2012, 14, 7229. (c) Kumar, M.; Persson, C.; Energy Procedia 2014, 44, 176. (d) Kehoe, A. B.; Temple, D. J.; Watson, G. W.; Scanlon, D. O. Phys. Chem. Chem. Phys. 2013, 15, 15477.
    66. Giacovazzo, C.; Monaco,H. L.; Viterbo, D.; Scordari, F.; Gilli, G.; Zanotti, G.; Catti, M. Fundamentals of Crystallography, International Union of Crystallography, Oxford University Press: New York, 1992.
    67. Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: New York, 2004.
    68. (a) Kanatzidis, M. G.; McCarthy, T. J.; Tanzer, T. A.; Chen, L. H.; Iordanidis, L. Chem. Mater. 1996, 8, 1465. (b) Kanatzidis, M. G. Semiconduct. Semimet. 2001, 69, 51.

    1 Eerenstein, W.; Mathur, N. D.; Scott, J. F. Nature, 2006, 442, 759.
    2 Wang, X.-L.; Dou, S. X.; Zhang, C. NPG. Asia, Mater., 2010, 2, 31.
    3 Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Nat. Nanotechnol., 2016, 11, 231.
    4 Matsushita, Y.; Ueda, Y. Inorg. Chem., 2003, 42, 7830.
    5 Matsushita, Y.; Sugiyama, K.; Y. Ueda, Inorg. Chem., 2006, 45, 6598.
    6 Poudeu, P. F. P.; Takas, N.; Anglin, C.; Eastwood, J.; Rivera, A. J. Am. Chem. Soc., 2010, 132, 5751.
    7 Ranmohotti, K. G. S.; Djieutedjeu, H.; Lopez, J.; Page, A.; Haldolaarachchige, N.; Chi, H.; Sahoo, P.; Uher, C.; Young, D.; Poudeu, P. F. P. J. Am. Chem. Soc., 2015, 137, 691.
    8 Sturza, M.; Allred, J. M.; Malliakas, C. D.; Bugaris, D. E.; Han, F.; Chung, D. Y.; Kanatzidis, M. G. Chem. Mater., 2015, 27, 3280.
    9 Djieutedjeu, H.; Makongo, J. P. A.; Rotaru, A.; Palasyuk, A.; Takas, N. J.; Zhou, X.; Ranmohotti, K. G. S.; Spinu, L.; Uher, C.; Poudeu, P. F. P. Eur. J. Inorg. Chem., 2011, 49, 3969.
    10 Hoffmann, H.; Gumlich, H. E.; Kimann, U.; Pohl, U. W.; Waldmann, H.; Maknke, H. E.; Spellmeyer, B.; Sulzer, G.; Zeitz, W. Physica B, 1993, 185, 259.
    11 Lokhande, C. D.; Ennaoui, A.; Patil, P. S.; Giersig, M.; Muller, M.; Diesner, K.; Tributsch, H.; Thin Solid Films, 1998, 330, 70.
    12 Matar, S. F.; Weihrich, R.; Kurowski, D.; Pfitzner, A.; Eyert, V. Phys. Rev. B, 2005, 71, 235207.
    13 Bindi, L.; Evain, M. Am. Mineral., 2007, 92, 886.
    14 Wakeshima, M.; Hinatsu, Y.; Oikawa, K.; Shimojo, Y.; Morii, Y. J. Mater. Chem., 2000, 10, 2183.
    15 Axtell III, E. A.; Hanko, J.; Cowen, J. A.; Kanatzidis, M. G. Chem. Mater., 2001, 13, 2850.
    16 Zhao, H. J.; Li, L. H.; Wu, L. M.; Chen, L. Inorg. Chem., 2010, 49, 5811.
    17 Yu, P.; Wu, L. M.; Chen, L. Inorg. Chem., 2013, 52, 724.
    18 Lin, H.; Shen, J. N.; Shi, Y. F.; Li, L. H.; Chen, L. Inorg. Chem. Front., 2015, 2, 298.
    19 Masuda, H.; Fujino T.; Sato, N.; Yamada K. J. Solid State Chem. 1999, 146, 336.
    20 Wakeshima, M.; Hinatsu, Y. J. Solid State Chem. 2000, 153, 330.
    21 Wakeshima, M.; Hinatsu, Y.; Oikawa, K.; Shimojo, Y.; Morii, Y. J. Mater Chem. 2000, 10, 2183.
    22 Wakeshima, M.; Hinatsu, Y. J. Solid State Chem. 2001, 159, 163.
    23 Ino, K.; Wakeshima, M.; Hinatsu, Y. Mater. Res. Bull. 2001, 36, 2207.
    24 Wakeshima, M.; Hinatsu, Y.; Ishii, Y.; Shimojo, Y.; Morii, Y. J. Mater Chem. 2002, 12, 631.
    25 Koo, H. J.; Whangbo, M. H.; Lee, K. S. J. Solid State Chem. 2002, 169, 143.
    26 Aplesnin, S. S.; Romanova, O. B.; Gorev, M. V.; Velikanov, D. A.; Gamzatov, A. G.; Aliev, A. M. J. Phys.: Condens. Matter, 2013, 25, 025802.
    27 Delgado, G. E.; Betancourt, L.; Sagredo, V.; Morón, M. C. Phy. Stat. Sol.(a). 2006, 203, 3627.
    28 Chung, D. Y.; Uher, C.; Kanatzidis, M. G. Chem. Mater., 2012, 24, 1854.
    29 Kim, J. H.; Chung, D. Y.; Kanatzidis, M. G. Chem. Commun., 2006, 1628.
    30 Kanatzidis, M. G. Acc. Chem. Res., 2005, 38, 361.
    31 Hsu, K. F.; Chung, D. Y.; Lal, S.; Mrotzek, A.; Kyratsi, T.; Hogan, T.; Kanatzidis, M. G. J. Am. Chem. Soc., 2002, 124, 2410.
    32 Hsu, K. F.; Lal, S.; Hogan, T.; Kanatzidis, M. G. Chem. Commun., 2002, 1380.
    33 Mrotzek, A.; Kanatzidis, M. G. Acc. Chem. Res. 2003, 36, 111
    34 Flahaut, D. L.; Patrie, M. Bull. Soc. Chim. Fr., 1962, 2048.
    35 Mitchell, K.; Ibers, J. A. Chem. Rev., 2002, 102, 1929.
    36 Ben-Dor, L.; Shilo, I.; Felner, I. J. Solid State Chem., 1978, 24, 401.
    37 Huang, F. Q.; Ibers, J. A. Inorg. Chem. 1999, 38, 5978.
    38 Tougait, O.; Ibers, J. A. Inorg. Chem. 2000, 39, 1790.
    39 Range, K. J.; Eglmeier, C. J. Alloys Compd. 1991, 176, L13.
    40 Onoda, M.; Chen, X. A; Sato, A.; Wada, H. J. Solid State Chem. 2000, 152, 332.
    41 Guymont, M.; Tomas, A.; Julien-Pouzol, M.; Jaulmes, S.;Guit- tard, M. Phys. Status Solidi A 1990, 121, 21.
    42 Lafond, A.; Cario, L.; van der Lee, A.; Meerschaut, A. J. Solid State Chem. 1996, 127, 295.
    43 Meerschaut, A.; Lafond, A.; Hoistad, L. M.; Rouxel, J. J. Solid State Chem. 1994, 111, 276.
    44 Huy-Dung, N.; EÄ tienne, J.; Laruelle, P. Bull. Soc. Chim. Fr. 1971, 2433.
    45 Adolphe, C.; Laruelle, P. Bull. Soc. Fr. Mineral. Cristallogr. 1968, 91, 219.
    46 Ferraris, G.; Makovicky, E.; Merlino, S. Crystallography of Modular Materials, Oxford University Press: 2008.
    47 Gostojic, Μ.; Nowacki, W.; Engel, P. Z. Kristallogr., 1982, 159, 217.
    48 Takagi, J.; Takéuchi, Y. Acta Cryst. 1972, B28, 649.
    49 Bente, K.; Engel, M.; Steins, M. Z. Kristallogr., 1993, 205, 327.
    50 Nespolo, M.; Ozawa, T.; Kawasaki, Y.; Sugiyama, K. J. Mineral. Petrol. Sci., 2012, 107, 226.
    51 Srikrishnan, T.; Nowacki, W. Z. Kristallogr., 1974, 140, 114.
    52 Gvozdev, V. I.; Fedoseev, D. G.; Gurikov, A. V.; Sadkin, S. I.; Semenyak, B. I.; Ratkin, V. V. Russ. J. Pac. Geol., 2014, 8, 200.
    53 Olvera, A.; Shi, G.; Djieutedjeu, H.; Page, A.; Uher, C.; Kioupakis, E.; Poudeu, P. F. P. Inorg. Chem., 2015, 54, 746.
    54 Chen, K. B.; Lee, C. S. Solid State Sci., 2009, 11, 1666..
    55 APEX 2 version 2013.10-0; Bruker Analytical X-ray Systems: Madison, WI, 2010.
    56 Sheldrick, G. M. SHELXTL-Plus NT crystallographic system, version 6.14; Bruker Analytical X-ray Systems: Madison, WI, 2000.
    57 (a) Tandon, S. P.; Gupta, J. P. Phys. Status Solidi 1970, 38, 363. (b) McCarthy, T. J.; Ngeyi, S. P.; Liao, J. H.; Degroot, D. C.; Hogan,T.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1993, 5, 331. (c) Kuo, S. M.; Chang, Y. M.; Chung, In; Jang, J. I.; Her, B, H.; Yang, S. H. Ketterson, J. B.; Kanatzidis, M. G., Hsu, K. F. Chem. Mater. 2013, 25, 2427.
    58 O’Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203.
    59 Ebisu, S.; Iijima, Y.; Iwasa, T.; Nagata, S. J. Phys. Chem. Solids., 2004, 65, 1113. The phase of Gd2S3 has been confirmed by the single-crystal X-ray structural analysis in the laboratory: Orthorhombic Pnma, a = 7.3356(6) Å, b = 3.9304(3) Å, c = 15.2709(12) Å, V = 440.29(6) Å3, Z = 8, R1 = 0.0251, wR2 = 0.0442.
    60 West, A. R. Solid State Chemistry and Its Applications, John Wiley & Sons: 1984.
    61 Mydosh, J. A. Spin Glasses: An Experimental Introduction, Taylor & Francis, London: 1993.
    62 Wang, P.; Stadnik, Z. M.; Żukrowski, J.; Cho, B. K.; Kim, J. Y. Phys. Rev. B, 2010, 82, 134404(7).
    63 Goodenough, J. B. Scholarpedia J., 2008, 3, 7382.

    無法下載圖示 校內:2020-01-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE