| 研究生: |
戴宇哲 Dai, Yu-Jhe |
|---|---|
| 論文名稱: |
金屬有機骨架衍生之磷酸鎳的合成及其葡萄糖電化學感測 Synthesis of metal-organic frameworks derived nickel phosphate for electrochemical detection of glucose |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 電化學感測 、葡萄糖 、金屬有機骨架 、磷酸鎳 |
| 外文關鍵詞: | electrochemical detection, glucose, metal-organic frameworks, Ni3(PO4)2 |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文製備多孔性磷酸鎳奈米材料,用於葡萄糖的電化學偵測。首先,將硝酸鎳溶液加至均苯三甲酸溶液,在室溫攪拌12小時,製得均苯三甲酸鎳。然後,在160℃下與磷酸氫鈉水熱反應15小時,將均苯三甲酸鎳磷酸化為磷酸鎳。由X光繞射光譜、能量分散X光光譜、高解析穿透式電子顯微鏡及選區電子繞射圖譜等分析可證實已成功合成出磷酸鎳。此外,磷酸化也導致比表面積的提升。而電化學阻抗與循環伏安量測也顯示,磷酸鎳修飾之電極較均苯三甲酸鎳修飾之電極具有較高的導電性,且在0.1 M NaOH溶液中對葡萄糖有較佳的電化學活性。利用安培法建立以磷酸鎳修飾之電極在0.1 M NaOH中偵測葡糖糖的校正曲線,在0.33 μM-0.36 mM與0.36-2.27 mM濃度區間可得兩線性關係,靈敏度分別為137.99與78.52 μAcm-2mM-1,偵測極限為0.2 μM (S/N=3)。更者,磷酸鎳修飾之電極對常見的干擾物具有良好的選擇性。這些結果證實其對葡萄糖電化學偵測的良好性能,特別是在低濃度範圍。
In this thesis, porous Ni3(PO4)2 nanomaterial was prepared as the electrode material for the electrochemical detection of glucose. Firstly, Ni-based metal-organic framework Ni3(BTC)2 was synthesized by adding nickel nitrate solution into H3BTC (benzene-1, 3, 5-tricarboxylic acid) solution and keeping stirring at room temperature for 12 h. Then, Ni3(BTC)2 was phosphorylated to form Ni3(PO4)2 via the hydrothermal reaction with sodium hydrogen phosphate at 160℃ for 15 h. The analyses of X-ray diffraction (XRD) pattern, energy-dispersive X-ray spectroscopy (EDS), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) pattern demonstrated the successful formation of Ni3(PO4)2. Also, it was found that phosphorylation also led to the increase of specific surface area. From the electrochemical impedance spectroscopy and cyclic voltammetry measurements, it was shown that the electrode modified with Ni3(PO4)2 possessed higher conductivity and exhibited better electroactivity towards glucose in 0.1 M NaOH than that modified with Ni3(BTC)2. By using the amperometric method to establish the calibration curve for the glucose detection on the Ni3(PO4)2-modified electrode, two linear relationships were obtained over the concentration ranges of 0.33μM-0.36mM and 0.36mM-2.27mM with the sensitivities of 137.99 and 78.52μAcm-2mM-1, respectively. The limit of detection (LOD) was 0.2μM (S/N=3). Furthermore, the Ni3(PO4)2-modified electrode had a good selectivity toward common interferences. These results demonstrated its good performance for the electrochemical detection of glucose, particularly at lower concentration.
[1] Zuk, R. F., Ginsberg, V. K., Houts, T., Rabbie, J., Merrick, H., Ullman, E. F., Fischer, M. M., Sizto, C. C., Stiso, S. N. & Litman, D. J.; Enzyme immunochromatography--a quantitative immunoassay requiring no instrumentation, Clinical chemistry, 31(7), 1144–1150,1985.
[2] Sherwood, M. J., Warchal, M. E. & Chen, S. T.; A new reagent strip (Visidex) for determination of glucose in whole blood, Clinical chemistry, 29(3), 438–446, 1983.
[3] Lou, S. C., Patel, C., Ching, S. & Gordon, J.; One-step competitive immunochromatographic assay for semiquantitative determination of lipoprotein (a) in plasma, Clinical chemistry, 39(4), 619–624, 1993.
[4] Law, W. T., Doshi, S., McGeehan, J., McGeehan, S., Gibboni, D., Nikolioukine, Y., Keane, R., Zheng, J., Rao, J. & Ertingshausen, G.; Whole-blood test for total cholesterol by a self-metering, self-timing disposable device with built-in quality control, Clinical chemistry, 43(2), 384–389, 1997.
[5] Beden, B., Largeaud, F., Kokoh, K. B. & Lamy, C.; Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of D-glucose: identification of reactive intermediates and reaction products, Electrochimica Acta, 41(5), 701–709, 1996.
[6] Xiao, F., Zhao, F., Mei, D., Mo, Z. & Zeng, B.; Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M= Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film, Biosensors and Bioelectronics, 24(12), 3481–3486, 2009.
[7] Chen, X., He, X., Gao, J., Jiang, J., Jiang, X. & Wu, C.; Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing, Sensors and Actuators B: Chemical, 299, 126945, 2019.
[8] Yu, S., Peng, X., Cao, G., Zhou, M., Qiao, L., Yao, J. & He, H.; Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor, Electrochimica Acta, 76, 512–517, 2012.
[9] Ni, Y., Jin, L., Zhang, L. & Hong, J.; Honeycomb-like Ni@C composite nanostructures: synthesis, properties and applications in the detection of glucose and the removal of heavy-metal ions, Journal of Materials Chemistry, 20(31), 6430–6436, 2010.
[10] Wang, T., Yu, Y., Tian, H. & Hu, J.; A novel non‐enzymatic glucose sensor based on cobalt nanoparticles implantation‐modified indium tin oxide electrode, Electroanalysis, 26(12), 2693–2700, 2014.
[11] Mei, H., Wu, W., Yu, B., Wu, H., Wang, S. & Xia, Q.; Nonenzymatic electrochemical sensor based on Fe@Pt core–shell nanoparticles for hydrogen peroxide, glucose and formaldehyde, Sensors and Actuators B: Chemical, 223, 68–75, 2016.
[12] Raza, W., Ahmad, K.; A highly selective Fe@ZnO modified disposable screen printed electrode based non-enzymatic glucose sensor (SPE/Fe@ZnO), Materials Letters, 212, 231–234, 2018.
[13] Cui, Z., Yin, H., Nie, Q., Qin, D., Wu, W. & He, X.; Hierarchical flower-like NiO hollow microspheres for non-enzymatic glucose sensors, Journal of Electroanalytical Chemistry, 757, 51–57, 2015.
[14] Zhu, J., Yin, H., Gong, J., Al-Furjan, M. S. H. & Nie, Q.; In situ growth of Ni/NiO on N-doped carbon spheres with excellent electrocatalytic performance for non-enzymatic glucose detection, Journal of Alloys and Compounds, 748, 145–153, 2018.
[15] Shu, Y., Yan, Y., Chen, J., Xu, Q., Pang, H. & Hu, X.; Ni and NiO nanoparticles decorated metal–organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum, ACS Applied Materials & Interfaces, 9(27), 22342–22349, 2017.
[16] Jiang, M., Sun, P., Zhao, J., Huo, L. & Cui, G.; A flexible portable glucose sensor based on hierarchical arrays of Au@Cu(OH)2 nanograss, Sensors, 19(22), 5055, 2019.
[17] Wa, Q., Xiong, W., Zhao, R., He, Z., Chen, Y. & Wang, X.; Nanoscale Ni(OH)x films on carbon cloth prepared by atomic layer deposition and electrochemical activation for glucose sensing, ACS Applied Nano Materials, 2(7), 4427–4434, 2019.
[18] Asadian, E., Shahrokhian, S. & Zad, A. I.; Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite, Journal of Electroanalytical Chemistry, 808, 114–123, 2018.
[19] Mao, H., Cao, Z., Guo, X., Sun, D., Liu, D., Wu, S. & Song, X. M.; Ultrathin NiS/Ni(OH)2 nanosheets filled within ammonium polyacrylate-functionalized polypyrrole nanotubes as an unique nanoconfined system for nonenzymatic glucose sensors, ACS Applied Materials & Interfaces, 11(10), 10153–10162, 2019.
[20] Fang, X., Zong, B. & Mao, S.; Metal–organic framework-based sensors for environmental contaminant sensing, Nano-Micro Letters, 10(4), 64, 2018.
[21] Anik, Ü., Timur, S. & Dursun, Z.; Metal organic frameworks in electrochemical and optical sensing platforms: a review, Microchimica Acta, 186(3), 196, 2019.
[22] Li, Y., Xie, M., Zhang, X., Liu, Q., Lin, D., Xu, C., Xie, F. & Sun, X.; Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection, Sensors and Actuators B: Chemical, 278, 126–132, 2019.
[23] Chen, X., Liu, D., Cao, G., Tang, Y. & Wu, C.; In situ synthesis of a sandwich-like graphene@ ZIF-67 heterostructure for highly sensitive nonenzymatic glucose sensing in human serums, ACS Applied Materials & Interfaces, 11(9), 9374–9384, 2019.
[24] Luo, Y., Wang, Q., Li, J., Xu, F., Sun, L., Bu, Y., Zou, Y., Karrtz, H. & Rosei, F.; Tunable hierarchical surfaces of CuO derived from metal–organic frameworks for non-enzymatic glucose sensing, Inorganic Chemistry Frontiers, 7(7), 1512–1525, 2020.
[25] Long, L., Liu, X., Chen, L., Wang, S., Liu, M. & Jia, J.; MOF-derived 3D leaf-like CuCo oxide arrays as an efficient catalyst for highly sensitive glucose detection, Electrochimica Acta, 308, 243–252, 2019.
[26] Zhang, Y., Xu, J., Xia, J., Zhang, F. & Wang, Z.; MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing, ACS Applied Materials & Interfaces, 10(45), 39151–39160, 2018.
[27] Zhang, L., Chen, S., Pan, Y. T., Zhang, S., Nie, S., Wei, P., Zhang, X., Wang, R. & Wang, D. Y.; Nickel metal–organic framework derived hierarchically Mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood Fiber/poly (lactic acid) composites. ACS Sustainable Chemistry & Engineering, 7(10), 9272-9280, 2019.
[28] Li, X., Elshahawy, A. M., Guan, C. & Wang, J.; Metal phosphides and phosphates‐based electrodes for electrochemical supercapacitors, Small, 13(39), 1701530, 2017.
[29] Bendi, R., Kumar, V., Bhavanasi, V., Parida, K. & Lee, P. S.; Metal organic framework‐derived metal phosphates as electrode materials for supercapacitors, Advanced Energy Materials, 6(3), 1501833, 2016.
[30] Lee, D. J., Scrosati, B. & Sun, Y. K.; Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55°C, Journal of Power Sources, 196(18), 7742–7746, 2011.
[31] Zhang, H., Zhang, Y., Wang, M., Shen, Y. & Liu, B.; Electro-oxidation of urea on the nickel phosphate-based nanomaterials, International Journal of Electrochemical Science, 15, 3400–3409, 2020.
[32] Zhang, D., Li, J., Li, R., Wang, Z., Wei, J., Zhang, X., Jiang, B., Zhang, J. & Zhang, R.; Facile synthesis of cobalt phosphate hydrate nanosheets with enhanced nonenzymatic glucose sensing, International Journal of Electrochemical Science, 14, 11541–11548, 2019.
[33] Xiao, L., Chen, Q., Jia, L., Zhao, Q. & Jiang, J.; Networked cobaltous phosphate decorated with nitrogen-doped reduced graphene oxide for non-enzymatic glucose sensing, Sensors and Actuators B: Chemical, 283, 443–450, 2019.
[34] Zhan, T., Yin, H., Zhu, J., Chen, J., Gong, J., Wang, L. & Nie, Q.; Ni3(PO4)2 nanoparticles decorated carbon sphere composites for enhanced non-enzymatic glucose sensing, Journal of Alloys and Compounds, 786, 18–26, 2019.
[35] Xiao, L., Zhao, Q., Jia, L., Chen, Q., Jiang, J. & Yu, Q.; Significantly enhanced activity of ZIF-67-supported nickel phosphate for electrocatalytic glucose oxidation, Electrochimica Acta, 304, 456–464, 2019.
[36] Gopel, W. & Schierbaum, K. D.; Definitions and typical examples. Sensors–A Comprehensive Survey, Chemical and Biochemical Sensors, 2, 2008.
[37] 柯富祥; 漫談生物分子感測器, 奈米通訊, 14(3), 3–9, 2007.
[38] Skoog, D. A., Holler, F. J. & Crouch, S. R .; Principles of instrumental analysis, Cengage learning, 2017.
[39] Kaiser, H.; Report for analytical chemists. II. Quantitation in elemental analysis, Analytical Chemistry, 42(4), 26A–59A, 1970.
[40] Gope, W., Hesse, J. & Zemel, J. N.; Liquid electrolyte sensors: potentiometry, amperometry, and conductometry, Sensors, Chemical and Biochemical Sensors, 2, 2008.
[41] 施正雄; 化學感測器, 1st. ed., 五南圖書出版有限股份公司, 2015.
[42] Upan, J., Reanpang, P., Chailapakul, O. & Jakmunee, J.; Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone, Talanta, 146, 766–771, 2016.
[43] Rideal, E. K. & Evans, U. R.; An electrochemical indicator for oxidising agents, Analyst, 38(449), 353–363. 1913.
[44] Clark Jr, L. C.; Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, 102, 29–45, 1962.
[45] Turner, A. P., Chen, B. & Piletsky, S. A.; In vitro diagnostics in diabetes: meeting the challenge, Clinical Chemistry, 45, 1596–1601, 1999.
[46] Bartlett, P. N.; Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, John Wiley & Sons. 2008.
[47] Shen, J., Dudik, L. & Liu, C. C.; An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor, Sensors and Actuators B: Chemical, 125(1), 106–113, 2007.
[48] Chaubey, A. & Malhotra, B.; Mediated biosensors, Biosensors and Bioelectronics, 17, 441–456, 2002.
[49] Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M.; The chemistry and applications of metal-organic frameworks, Science, 341, 6149, 2013
[50] Yaghi, O. M. & Li, H.; Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society, 117(41), 10401–10402, 1995.
[51] Moghadam, P. Z., Li, A., Wiggin, S. B., Tao, A., Maloney, A. G., Wood, P. A., Ward, S. C. & Fairen-Jimenez, D.; Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future, Chemistry of Materials, 29(7), 2618–2625, 2017.
[52] Xie, Z., Xu, W., Cui, X. & Wang, Y.; Recent progress in metal–organic frameworks and their derived nanostructures for energy and environmental applications, ChemSusChem, 10(8), 1645–1663, 2017.
[53] Yaghi, O. M., Li, H. & Groy, T. L.; Construction of porous solids from hydrogen-bonded metal complexes of 1, 3, 5-benzenetricarboxylic acid. Journal of the American Chemical Society, 118(38), 9096-9101, 1996.
[54] Jabarian, S. & Ghaffarinejad, A.; Electrochemical Synthesis of NiBTC Metal Organic Framework Thin Layer on Nickel Foam: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 29(5), 1565–1574, 2019.
[55] Lestari, W. W., Winarni, I. D. & Rahmawati, F.; Electrosynthesis of Metal-Organic Frameworks (MOFs) Based on Nickel (II) and Benzene 1, 3, 5-Tri Carboxylic Acid (H3BTC): An Optimization Reaction Condition. In IOP Conference Series: Materials Science and Engineering, 172(1), 012064, 2017.
[56] He, J., Sun, S., Zhou, Z., Yuan, Q., Liu, Y. & Liang, H.; Thermostable enzyme-immobilized magnetic responsive Ni-based metal–organic framework nanorods as recyclable biocatalysts for efficient biosynthesis of S-adenosylmethionine. Dalton Transactions, 48(6), 2077–2085, 2019.
[57] Blagojević, V. A., Lukić, V., Begović, N. N., Maričić, A. M., & Minić, D. M.; Hydrogen storage in a layered flexible [Ni2(btc)(en)2] coordination polymer. International Journal of Hydrogen Energy, 41(47), 22171–22181, 2016.
[58] Xie, X. C., Huang, K. J. & Wu, X.; Metal–organic framework derived hollow materials for electrochemical energy storage, Journal of Materials Chemistry A, 6(16), 6754–6771, 2018.
[59] Salunkhe, R. R., Kaneti, Y. V. & Yamauchi, Y.; Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects, ACS Nano, 11(6), 5293–5308, 2017.
[60] Xia, W., Mahmood, A., Zou, R. & Xu, Q.; Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy & Environmental Science, 8(7), 1837–1866, 2015.
[61] Wang, F., Chen, X., Chen, L., Yang, J. & Wang, Q.; High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite, Materials Science and Engineering: C, 96, 41–50, 2019.
[62] Liu, B., Wang, X., Liu, H., Zhai, Y., Li, L. & Wen, H.; 2D MOF with electrochemical exfoliated graphene for nonenzymatic glucose sensing: central metal sites and oxidation potentials, Analytica Chimica Acta, 1122, 9–19, 2020.
[63] Qu, C., Zhang, L., Meng, W., Liang, Z., Zhu, B., Dang, D., Dai, S., Zhao, B., Tabassum, H., Gao, S., Zhang, H., Guo, W., Zhao, R., Huang, X., Liu, M. & Zou, R.; MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. Journal of Materials Chemistry A, 6(9), 4003-4012, 2018.
[64] Wu, C., Du, Y., Fu, Y., Wang, W., Zhan, T., Liu, Y., Yang, Y. & Wang, L.; MOF-derived formation of nickel cobalt sulfides with multi-shell hollow structure towards electrocatalytic hydrogen evolution reaction in alkaline media. Composites Part B: Engineering, 177, 107252, 2019.
[65] Li, G. C., Liu, M., Wu, M. K., Liu, P. F., Zhou, Z., Zhu, S. R., Liu, R. & Han, L.; MOF-derived self-sacrificing route to hollow NiS2/ZnS nanospheres for high performance supercapacitors. RSC advances, 6(105), 103517-103522, 2016.
[66] Li, X., Xiao, X., Li, Q., Wei, J., Xue, H., & Pang, H.; Metal (M= Co, Ni) phosphate based materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 5(1), 11-28, 2018.
[67] 胡啟章; 電化學原理與方法, 2nd ed., 五南圖書出版有限股份公司, 2011.
[68] Gosser, D. K.; Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms, New York: VCH., 43, 1993
[69] Bard, A. J. & Faulkner, L. R.; Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, 2001.
[70] Zhao, W. R., Kang, T. F., Lu, L. P., Shen, F. X., & Cheng, S. Y. (2017). A novel electrochemical sensor based on gold nanoparticles and molecularly imprinted polymer with binary functional monomers for sensitive detection of bisphenol A. Journal of Electroanalytical Chemistry, 786, 102-111.
[71] Chiu, I. T., Li, C. T., Lee, C. P., Chen, P. Y., Tseng, Y. H., Vittal, R., & Ho, K. C. (2016). Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: a study on the morphology control. Nano Energy, 22, 594-606.
[72] Noori, M. T., Ghangrekar, M. M., & Mukherjee, C. K. (2016). V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater. International journal of hydrogen energy, 41(5), 3638-3645.
[73] Tsai, I. L., Cao, J., Le Fevre, L., Wang, B., Todd, R., Dryfe, R. A., & Forsyth, A. J. (2017). Graphene-enhanced electrodes for scalable supercapacitors. Electrochimica Acta, 257, 372-379.
[74] Sacco, A.; Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829, 2017.
[75] Macdonald, J. R., & Barsoukov, E.; Impedance spectroscopy: theory, experiment, and applications. History, 1(8), 1-13, 2005.
[76] Rubinson, J. F., & Kayinamura, Y. P.; Charge transport in conducting polymers: insights from impedance spectroscopy. Chemical Society Reviews, 38(12), 3339-3347, 2009.
[77] Alexander, C. L., Tribollet, B., & Orazem, M. E.; Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. Influence of roughness. Electrochimica Acta, 173, 416-424, 2015.
[78] Randviir, E. P., & Banks, C. E.; Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods, 5(5), 1098-1115, 2013.
[79] Einarsrud, M. A. & Grande, T.; 1D oxide nanostructures from chemical solutions, Chemical Society Reviews, 43(7), 2187–2199, 2014.
[80] Eckert Jr, J. O., Hung‐Houston, C. C., Gersten, B. L., Lencka, M. M. & Riman, R. E.; Kinetics and mechanisms of hydrothermal synthesis of barium titanate, Journal of the American Ceramic Society, 79(11), 2929–2939, 1996.
[81] Yang, T., Liu, Y., Yang, D., Deng, B., Huang, Z., Ling, C. D., Liu, H., Wang, G., Guo, Z. & Zheng, R.; Bimetallic metal-organic frameworks derived Ni-Co-Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Materials, 17, 374–384, 2019.
[82] Sing, K. S.; Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57(4), 603–619, 1984.
[83] Meng, T., Jia, H., Ye, H., Zeng, T., Yang, X., Wang, H. & Zhang, Y.; Facile preparation of CoMoO4 nanorods at macroporous carbon hybrid electrocatalyst for non-enzymatic glucose detection, Journal of Colloid and Interface Science, 560, 1–10, 2020.
[84] Al-Omair, M. A., Touny, A. H., Al-Odail, F. A. & Saleh, M. M.; Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode, Electrocatalysis, 8(4), 340–350, 2017.
[85] Padmanathan, N., Shao, H. & Razeeb, K. M.; Multifunctional nickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors, ACS Applied Materials & Interfaces, 10(10), 8599–8610, 2018.
[86] Karikalan, N., Velmurugan, M., Chen, S. M. & Karuppiah, C.; Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor, ACS Applied Materials & Interfaces, 8(34), 22545–22553, 2016.
[87] Xu, D., Zhu, C., Meng, X., Chen, Z., Li, Y., Zhang, D. & Zhu, S.; Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose, Sensors and Actuators B: Chemical, 265, 435–442, 2018.
[88] Wang, X., Wang, M., Feng, S., He, D. & Jiang, P.; Controlled synthesis of flower-like cobalt phosphate microsheet arrays supported on Ni foam as a highly efficient 3D integrated anode for non-enzymatic glucose sensing, Inorganic Chemistry Frontiers, 7(1), 108–116, 2020.
[89] Tomanin, P. P., Cherepanov, P. V., Besford, Q. A., Christofferson, A. J., Amodio, A., McConville, C. F., Yarovsky, I., Caruso, F. & Cavalieri, F.; Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH, ACS applied materials & interfaces, 10(49), 42786–42795, 2018.