簡易檢索 / 詳目顯示

研究生: 姜竣凱
Chiang, Chun-Kai
論文名稱: 交流電動力學操控下的癌細胞之分離及現址檢測
AC Electrokinetic Manipulation for Separation and in situ Detection of Cancer Cells
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 58
中文關鍵詞: 介電泳電旋轉分離單一細胞捕捉快速診斷
外文關鍵詞: Dielectrophoresis, electrorotation, separation, capture single cell, rapid diagnosis
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來個人化癌症醫療的蓬勃發展,然而迄今傳統的檢測方式面臨許多問題,例如前處理的純度低,操作過程繁瑣和儀器貴重等。因此,如何將腫瘤細胞從臨床檢體中快速且精確的分離出來,提升診斷的效率與藥物的正確使用,是我們致力研究的目標。交流電動力學應用於操控細胞的技術已被結合在微流體晶片和感測器中,能夠快速與精準地操控並分析標的粒子。因此本研究是整合電動力學技術結合在單一晶片中,完整進行檢體中癌細胞的分離、單一細胞的捕捉及藥物反應的分析。研究架構主要分為三個部分:(1)檢體中癌細胞的分離:本研究發展出一套全新的on-chip分離方法,藉由介電特性的不同達到癌細胞與非癌細胞的分離,檢體中的癌細胞至特定檢測區域,此時非癌細胞的粒子會被傳送至檢測區以外。 (2)以三維介電泳力與開關電路結合進行單一細胞捕捉: 當單一待側癌細胞進入檢測區時,開啓上方電極並與下方電極形成強大的隔離電場阻絕額外的癌細胞,而此時單一癌細胞會往檢測區中間移動(弱電場區)。結果顯示,此晶片單一細胞捕捉的效率高達85%以上,且捕捉實驗耗時不超過1分鐘。(3)利用三維電旋轉整合晶片進行癌細胞電特性之評估: 藉由電旋轉圖譜的判讀達到快速評估細胞介電特性的變化,並引進實驗室剛研發的電旋轉穩定系統後,更能減少轉速上的變異度且比起傳統的電旋轉檢測,圖譜在高頻中更加的完整。由結果得知最佳辨別癌細胞的特性於頻率100 kHz下,且單顆細胞的電旋轉實驗不超過5分鐘即可完成。本研究提供一個微小型整合式生物晶片可以同時進行樣本的前處理與癌細胞對藥物的檢測分析,未來希望能廣泛地運用於個人化醫療上,且提供給醫師方便、省時、低成本的平台。

    Recently, personalized cancer treatment had been developed vigorously. However, there are many problems in traditional isolation and detection methods, such as low purity, complicated operation procedures, and expensive instruments. Thus, how to separate tumor cells from clinical samples rapidly and precisely and how to improve the efficient diagnosis for a proper reference of personalized treatment are the aims of this study. AC electrokinetics for the manipulation of cells had been widely integrated into microfluidic chips and biosensors for manipulating and analyzing specific targets accurately. In this study, dielectrophoresis and electrorotation were integrated into our novel biochip platform to achieve separation of tumor cells, capture of single tumor cell and analysis of drug response in the tumor cell at the same reaction. In this thesis, three subjects will be introduced, (1) Separation of cancer cells from complex samples by electrokinetics: We developed a new on-chip separation method by different dielectric properties, cancer cells were transported to specific detection area and non-cancer cells were excluded out of detection area as an AC electric field was applied to each electrodes. (2) Capture of single cancer cell by a switch circuit and three-dimensional dielectrophoresis: When single cancer cell entered into detection area, the upper electrodes were turned on and generated a strong electric field with under electrodes to block extra cancer cells. That single cell would be tracked to the detection center with a relatively low electric field. The efficiency to capture single cell is up to 85% within one min. (3) Assessment of cancer cells’ electrical characteristics by spectrum of three-dimensional electrorotation (ROT): The results of ROT spectrum can be achieved rapid assessment of cancer cells’ electrical characteristic, in which the variations can be reduced obviously and the high frequency of spectrum can be analyzed more completely than traditional ROT method by combining an extra-stabilized system into our device. As a result, the optimal frequency for electrorotation discrimination of cancer cell was found at 100 kHz and the total detection time is within 5 min per cell. Finally, we developed a miniaturized and integrated biochip that can be used in samples pretreatment and detection of cancer cells successively. We hope this platform can be used widely in personalized cancer treatment because of its convenient, timesaving and low cost.

    Abstract I 中文摘要 II 致謝 III List of Figures VI List of Table IX Chapter 1 Introduction 1 1.1 Conventional Sample Pre-treatment Methods 4 1.1.1 Centrifugation 4 1.1.2 Size-based Filtration 5 1.1.3 Immunomagnetic Separation 6 1.1.4 Flow Cytometry 7 1.2 Current Separation Methods in Microfluidic Device 8 1.2.1 Hydrodynamics 8 1.2.2 Electrokinetics 10 1.3 Research Framework 16 Chapter 2 Materials and Methods 17 2.1 Micro-Fabrication 17 2.1.1 RCA Clean 17 2.1.2 Metal Manufacturing 17 2.1.3 Photolithography Technique 18 2.1.4 Etching Technique 18 2.1.5 Micro-channel Manufacturing 19 2.1.6 Three-dimensional Chip Manufacturing 20 2.2 Chip Design 21 2.3 The Working Principle of Integrated Chip 22 2.4 Sample Preparation 24 2.4.1 Cell Culture 24 2.4.2 Patient and Sample Pretreatment 25 2.4.3 Experiment Buffer Exchange 25 2.5 Experimental Apparatus and System Configuration 26 2.5.1 Experimental Apparatus 26 2.5.2 System Configuration 30 2.6 Analysis Methods of the Experimental Results 31 Chapter 3 Results and Discussion 32 3.1 Dielectrophoretic Behavior of Cell Lines and Blood Cells 32 3.2 The Optimal Separation Conditions 35 3.2.1 Voltage and Frequency Conditions 35 3.2.2 Width of Electrode and Spacing 39 3.3 Multiple Samples Separation 40 3.3.1 Spiking Model 40 3.3.2 Clinical Sample 43 3.4 The Single Cell Capture 46 3.5 Electrorotation Analysis 48 3.5.1 Phase and Voltage Condition 48 3.5.2 Comparison of Planar and Three-dimensional Electrorotation Chip 49 3.5.3 Original Electrorotaion Spectrum of Cancer Cells (AS2) 50 3.5.4 Improved Electrorotation Spectrum of Cancer Cells (AS2) 51 3.6 Integration of Separation, Single Cell Capture and in-situ Electrorotation Detection 53 Chapter 4 Conclusion and Prospect 55 References 56

    Carroll, S., & Al-Rubeai, M. (2005). ACSD labelling and magnetic cell separation: a rapid method of separating antibody secreting cells from non-secreting cells. Journal of Immunological Methods, 296(1-2), 171-178.
    Cheng, I. F., Froude, V. E., Zhu, Y., Chang, H. C., & Chang, H. C. (2009). A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab on a Chip, 9(22), 3193-3201.
    Choi, E., Kim, B., & Park, J. (2009). High-throughput microparticle separation using gradient traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering, 19(12), 125014.
    Gwak, G. Y., Yoon, J. H., Shin, C. M., Ahn, Y. J., Chung, J. K., Kim, Y. A., Lee, H. S. (2005). Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. Journal of Cancer Research and Clinical Oncology, 131(10), 649-652.
    Han, S.-I., Joo, Y.-D., & Han, K.-H. (2013). An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst, 138(5), 1529-1537.
    Huang, T., Jia, C. P., Jun, Y., Sun, W. J., Wang, W. T., Zhang, H. L., Zhao, J. L. (2014). Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosensors and Bioelectronics, 51, 213-218.
    Huang, W. L., Yeh, H. H., Lin, C. C., Lai, W. W., Chang, J. Y., Chang, W. T., & Su, W. C. (2010). Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Molecular Cancer, 9, 309.
    Joensuu, H. (2008). Systemic chemotherapy for cancer: from weapon to treatment. The Lancet Oncology, 9(3), 304.
    Jones, T. B. (2003). Basic theory of dielectrophoresis and electrorotation. Engineering in Medicine and Biology Magazine, IEEE, 22(6), 33-42.
    Julius, M. H., Masuda, T., & Herzenberg, L. A. (1972). Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proceeding of the National Academy Science of the United States of America, 69(7), 1934-1938.
    Krause, D. S., & Van Etten, R. A. (2005). Tyrosine Kinases as Targets for Cancer Therapy. New England Journal of Medicine, 353(2), 172-187.
    Kuntaegowdanahalli, S. S., Bhagat, A. A., Kumar, G., & Papautsky, I. (2009). Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip, 9(20), 2973-2980.
    Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Haber, D. A. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129-2139.
    Mach, A. J., Kim, J. H., Arshi, A., Hur, S. C., & Di Carlo, D. (2011). Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab on a Chip, 11(17), 2827-2834.
    Mancini, R., Giarnieri, E., De Vitis, C., Malanga, D., Roscilli, G., Noto, A., Ciliberto, G. (2011). Spheres Derived from Lung Adenocarcinoma Pleural Effusions: Molecular Characterization and Tumor Engraftment. PLoS ONE, 6(7), e21320.
    Miltenyi, S., Muller, W., Weichel, W., & Radbruch, A. (1990). High gradient magnetic cell separation with MACS. Cytometry, 11(2), 231-238.
    Mohamed, H., Murray, M., Turner, J. N., & Caggana, M. (2009). Isolation of tumor cells using size and deformation. Journal of Chromatography A, 1216(47), 8289-8295.
    Morgan, H., & Green, N. G. (2003). AC electrokinetics: colloids and nanoparticles: Research Studies Press. Chapter 4, p.49 ~ 63.
    Noble, P., & Cutts, J. (1967). Separation of blood leukocytes by Ficoll gradient. The Canadian Veterinary Journal, 8(5), 110.
    Pohl, H. A. (1951). The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 22(7), 869-871.
    Pohl, H. A., & Pohl, H. (1978). Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields: Cambridge university press Cambridge.
    Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62(1), 10-29.
    Spiro, S. G., & Silvestri, G. A. (2005). One hundred years of lung cancer. American Journal of Respiratory and Critical Care Medicine, 172(5), 523-529.
    Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schutze, K., Paterlini-Brechot, P. (2000). Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulatingtumor cells. American Journal of Pathology, 156(1), 57-63.
    Warkiani, M. E., Guan, G., Luan, K. B., Lee, W. C., Bhagat, A. A., Chaudhuri, P. K., Han, J. (2014). Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab on a Chip, 14(1), 128-137.
    Watson, J. V. (2004). Introduction to flow cytometry: Cambridge University Press. Chapter 2, p.40 ~82.

    無法下載圖示 校內:2019-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE