簡易檢索 / 詳目顯示

研究生: 蕭亦凱
Hsiao, Yi-Kai
論文名稱: 毫米波倍頻器、寬頻功率偵測器及具自動化洩漏迴波消除功能之60-GHz CMOS都卜勒雷達感測晶片系統之實驗量測
Design of Millimeter-wave Frequency Doubler, Wideband Power Detector and Experimental Measurement of 60-GHz Vital-Signs Doppler Radar Sensor with Automatic Clutter Cancellation
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: CMOS毫米波倍頻器功率偵測器都卜勒雷達感測晶片
外文關鍵詞: CMOS, Frequency Doubler, Millimeter-Wave (MMW), Power Detectors, 60-GHz CMOS vital-signs Doppler Radar Sensor Chip
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計研究45-90 GHz寬頻倍頻器及寬頻V-band對數功率偵測器毫米波晶片、及具60-GHz CMOS都卜勒雷達感測晶片系統之實驗量測。論文第一部分為使用馬遜平衡器之45-90 GHz寬頻倍頻器,採用single-balanced架構,利用輸入端的馬遜平衡器,使得兩顆MOS的基頻項在輸出端有180度的相位差而互相抵銷,因此可省去基頻的濾波電路,並達到晶片面積微小化的目的。論文第二部分為V-band寬頻對數功率偵測器毫米波晶片,主體架構採用連續偵測對數放大器架構,增益級則採用四級疊接組態毫米波寬頻放大器,替換掉傳統限制放大器設計方式,而整體電路特性有寬動態範圍、低對數錯誤與寬頻表現。對數功率偵測器整合在系統電路中,可使其應用於內建測試機制、自動功率控制等。晶片皆採用TSMC CMOS 90-nm GUTM製,電路設計使用Agilent ADS與3-D全波電磁模擬軟體進行模擬,晶片量測採fully on-wafer方式進行量測。論文第三部分為具自動化洩漏迴波消除功能之60-GHz CMOS都卜勒雷達人體呼吸心跳訊號感測晶片系統之實驗量測, 介紹了都卜勒雷達感測晶片之量測原理與電路設計考量,並且實際進行實驗人體呼吸心跳訊號量測。

    This thesis presents the design of CMOS millimeter-wave (MMW) frequency doubler and power detector, implemented by standard TSMC 90-nm GUTM CMOS process, and the experimental measurement of a 60-GHz CMOS vital-signs Doppler radar (VSDR) RF sensor with automatic clutter cancellation (ACC). In a 45–90 GHz CMOS frequency doubler, the single-balanced topology with marchand balun is adopted. For bandwidth enhancement, an input marchand balun with improved topology is designed. In the design of a V-band CMOS logarithmic power detector, the modified successive detection logarithmic amplifier (SDLA) structure is proposed. Instead of using traditional differential limiting amplifiers, the MMW amplifiers are applied for the gain cells (to the V-band). Furthermore, by adopting the inter-stage matching skills, a wideband gain cell is designed to enhance the bandwidth performance of power detector. In the final part, extensive experimental measurement of 60-GHz vital-signs Doppler radar (VSDR) RF sensor with automatic clutter cancellation (ACC) is presented. The tiny actuator vibration and the human vital signs are successfully detected. The heartbeat measurement results are well agreed with BIOPEC ECG.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 3 第二章 使用馬遜平衡器之45-90-GHz寬頻CMOS倍頻器 5 2.1 倍頻器於系統應用之簡介 5 2.2 倍頻器之重要參數介紹 6 2.3 倍頻器架構與原理簡介 7 2.3.1主動式倍頻器 8 2.3.2被動式倍頻器 12 2.4 使用馬遜平衡器之45-90-GHz寬頻CMOS倍頻器 13 2.4.1 電路設計考量 14 2.4.2 設計流程總結 16 2.4.3 模擬與量測結果 17 2.5 結果與討論 20 第三章 V-band高輸入動態範圍之寬頻CMOS對數功率偵測器 21 3.1 功率偵測器於系統應用之簡介 21 3.2 功率偵測電路及操作原理 23 3.3 對數放大器原理及重要參數介紹 28 3.3.1 對數放大器參數定義 29 3.3.2 對數放大器實現方法與架構 30 3.4 V-band 高輸入動態範圍之寬頻CMOS對數功率偵測器 34 3.4.1 電路設計考量 35 3.4.2 設計流程總結 47 3.4.3 模擬與量測結果 49 3.5 結果與討論 54 第四章 具自動化洩漏迴波消除功能之60-GHz CMOS都卜勒雷達人體呼吸心跳訊號感測晶片系統之實驗量測 55 4.1 研究背景與動機 55 4.2 人體呼吸心跳訊號感測都卜勒雷達原理簡介 56 4.3 具自動化洩漏迴波消除功能之60-GHz CMOS都卜勒雷達感測晶片系統電路設計考量 59 4.4 具自動化洩漏迴波消除功能之60-GHz CMOS都卜勒雷達感測晶片系統非接觸式感測實驗 60 4.4.1 量測架設與電路運作 60 4.4.2 致動器振動頻率量測 62 4.4.3人體呼吸心跳頻率量測 64 4.5 結果與討論 74 第五章 結論 75 參考文獻 77

    [1] S. T. Nicolcon, A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, S. P. Voinigescu, “A 1.2 V, 140 GHz receiver with on-die antenna in 65 nm CMOS,” in IEEE RFIC Symp. Dig., pp.229-232, Jun.2008.
    [2] Ekaterina Laskin, Mehdi Khanpour, Sean T. Nicolson, Alexander Tomkins, Patrice Garcia, Andreia Cathelin, Member, Didier Belot, and Sorin P. Voinigescu, “Nanoscale CMOS transceiver design in the 90–170-GHz range,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3477–3490, Dec. 2009.
    [3] H.-C. Kuo, H.-H. Wang, H.-L. Yue, Y.-W. Ou, C.-C. Lin, H.-R. Chuang, and T.-H. Huang, “A 60-GHz fully integrated CMOS sub-harmonic RF receiver with MM-wave on-chip AMC-antenna/balun-filter and on-wafer wireless transmission test,” in IEEE MTT-S Int. Microw. Symp. Dig., 2012, Montreal, Canada.
    [4] S.S. Ahmed, A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. Schmidt, “Advanced microwave imaging,” IEEE Microwave Magazine, vol. 13, no. 6, pp. 26-43, Sep. 2012.
    [5] IEEE 802.15 Working Group for WPAN. [Online]. Available:
    http://www.ieee802.org/15
    [6] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.
    [7] A. Arbabian, B. Afshar, J.-C. Chien, S. Kang, S. Callender, E. Adabi, S. Toso, R. Pilard, D. Gloria, and A. Niknejad, “A 90 GHz-carrier 30 GHz-bandwidth hybrid switching transmitter with integrated antenna,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 420–421.
    [8] A. Arbabian, S. Kang, S. Callender, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz pulsed-transmitter with near-field/far-field energy cancellation using a dual-loop antenna,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2011.
    [9] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition” IEEE J. Solid-State Circuit, vol. 48, no. 4, pp. 1055-1071, Apr. 2013.
    [10] J. C. Lin, J. Salinger, "Microwave measurement of respiration," 1975 IEEE MTT-S Int. Microwave Symp. Dig., pp. 285-287, 12- 14 May 1975.
    [11] J. C. Lin, "Noninvasive microwave measurement of respiration," Proceedings of the IEEE, vol. 63, no. 10, p. 1530, Oct. 1975.
    [12] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke and Jenshan Lin, "0.25/spl mu/m CMOS and BiCMOS single-chip direct-conversion doppler radar for remote sensing of vital signs," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2002, pp. 278-505.
    [13] J. H. Choi and D. K. Kim, “A remote compact sensor for the real-time monitoring of human heartbeat and respiration rate,” Biomedical Circuits and Systems, IEEE Transactions on, vol. 3, no. 3, pp. 181 –188, june 2009.
    [14] T.-Y. J. Kao, Y. Yan, T.-Z. Shen, A. Y.-K. Chen, and J. Lin, "Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection," IEEE Trans. Microw. Theory Tech., vol. 61, pp. 1649-1659, Apr. 2013.
    [15] H.-C. Kuo et al., “A fully integrated 60-GHz CMOS direct-conversion doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1018–1028, Apr. 2016.
    [16] C. C. Chou, W. C. Lai, Y. K. Hsiao and H. R. Chuang, "60-GHz CMOS Doppler Radar Sensor With Integrated V-Band Power Detector for Clutter Monitoring and Automatic Clutter-Cancellation in Noncontact Vital-Signs Sensing," IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635-1643, March 2018.
    [17] 許志維,應用於K-band之倍頻器設計,國立中央大學電機工程研究所碩士論文,民國一百零三年。
    [18] F. Ellinger and H. Jäckel, “Ultra compact SOI CMOS frequency doubler MMIC for low power applications at 26.5–28.5 GHz,” IEEE Microwave Compon. Lett., vol. 14, no. 2, pp. 53–55, Feb. 2004.
    [19] J. Chen and H. Wang, "A High Gain, High Power K-Band Frequency Doubler in 0.18 μm CMOS Process," IEEE Microwave Compon. Lett., vol. 20, no. 9, pp. 522-524, Sept. 2010.
    [20] J. H. Chen and H. Wang, “A high gain, high power K-band frequency doubler in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522–524, Sep. 2010.
    [21] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “High-power high ef- ficiency SiGe Ku- and Ka-band balanced frequency doublers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 754–761, Feb. 2005.
    [22] P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai, and H. Wang, “Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand balun,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 1913–1923, May 2013.
    [23] O. Momeni and E. Afshari, "A Broadband mm-Wave and Terahertz Traveling-Wave Frequency Multiplier on CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2966-2976, Dec. 2011.
    [24] Y. Ye, J. Zhang and X. W. Sun, "A W-Band Traveling-Wave Frequency Doubler With Output Power of 9 dBm and Power Efficiency of 11.2%," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 10, pp. 704-706, Oct. 2014.
    [25] F. Yu, K. G. Lyon and E. C. Kan, "A Novel Passive RFID Transponder Using Harmonic Generation of Nonlinear Transmission Lines," IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4121-4127, Dec. 2010.
    [26] M. Adnan and E. Afshari, "A low conversion loss passive frequency doubler," IEEE Custom Integrated Circuits Conference (CICC), 2011, pp. 1-4.
    [27] E. Afshari and A. Hajimiri, "Nonlinear transmission lines for pulse shaping in silicon," IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 744-752, March 2005.
    [28] Afshari, E., Bhat, H. S., Hajimiri, A., et al., "Extremely wideband signal shaping using one-and two-dimensional nonuniform nonlinear transmission lines", J. Appl. Phys., 2006, 99, (5), p. 054901
    [29] B. Y. Chen, Y. H. Hsiao and H. Wang, "A broadband doubler with harmonic rejection in 90nm CMOS," IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2015, pp. 25-27.
    [30] 何姿誼,無線接收器之自動增益控制設計與實作,國立臺灣大學電機資訊學院電子工程學研究所碩士論文,民國一百年。
    [31] 謝明良,射頻功率放大器之發射功率偵測,國立中正大學電機工程研究所碩士論文,民國九十八年。
    [32] U. R. Pfeiffer and D. Goren, “A 20 dBm fully integrated 60 GHz SiGe power amplifier with automatic level control,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1455–1463, Jul. 2007.
    [33] F.D. Canales and M. Abbasi, “A 75-90 GHz high linearity MMIC power amplifier with integrated output detector,” in IEEE Int. Microw. Symp. Dig., June 2013, pp. 1–4.
    [34] M. Uzunkol, “Low noise millimeter-wave and THz receivers, imaging arrays, switches in advanced CMOS and SiGe processes,” Ph.D. dissertation, University of California, San Diego, California, 2013.
    [35] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
    [36] Y. Zhou and M. Y. W. Chia, “A low-power ultra-wideband CMOS true RMS power detector,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1052–1058, May 2008.
    [37] Y.-C. Huang, H.-H. Hsieh, and L.-H. Lu, “A build-in self-test technique for RF low-noise amplifiers,” IEEE Trans. Microw. Theory. Techn., vol. 56, no. 5, pp. 1035–1042, May 2008.
    [38] J.-H. Tsai, “Design of 40–108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 670–678, Mar. 2012.
    [39] Y.-J. Chuang et al, “A Wideband InP DHBT True Logarithmic Amplifier,” IEEE Trans. Microw. Theory Techn., vol. 54, pp. 3843–3847, Nov 2006.
    [40] J.-W. Wu, K.-C. Hsu, W.-J. Lai, C.-H. To, S.-W. Chen, C.-W. Tang, and Y.-Z. Juang, “A linear-in-dB radio-frequency power detector,” in IEEE Int. Microw. Symp. Dig., Jun. 2011, pp. 1–4.
    [41] I. Kim and Y. Kwon, “A broadband logarithmic power detector in 0.13-μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 9, pp. 498–500, 2013.
    [42] 謝易耕,射頻功率偵測器的應用,國立交通大學電子工程學系電子研究所碩士論文,民國九十七年。
    [43] 微波電路的Mapping概念 [Online]. Available:
    http://zuomin.blogspot.com/2017/09/mapping.html
    [44] J. Choi, et al. “Wide dynamic-range CMOS RMS power detector,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 868–880, Mar. 2016.
    [45] A. Serhan, E. Lauga-Larroze and J. M. Fournier, "Common-Base/Common-Gate Millimeter-Wave Power Detectors," IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4483-4491, Dec. 2015.
    [46] C. C. Chou, W. C. Lai, T. H. Huang and H. R. Chuang, "A low minimum detectable power, high dynamic range, V-Band CMOS millimeter-wave logarithmic power detector," IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 642-645.
    [47] C. Li, Y. Xiao and J. Lin, "Experiment and Spectral Analysis of a Low-Power Ka-Band Heartbeat Detector Measuring From Four Sides of a Human Body," IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464-4471, Dec. 2006.
    [48] C. Li and J. Lin, "Random Body Movement Cancellation in Doppler Radar Vital Sign Detection," IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3143-3152, Dec. 2008.
    [49] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, pp. 697–702, July 1986.
    [50] Kun-Mu Chen, Yong Huang, Jianping Zhang and A. Norman, "Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier," IEEE Trans. Biomed. Eng., vol. 47, no. 1, pp. 105-114, Jan. 2000.
    [51] 郭信智,應用於極短距離Gigabit毫米波無線通訊及非接觸式人體生理訊號感測都卜勒雷達之60-GHz CMOS收發機射頻晶片設計研究,國立成功大學電腦與通信工程研究所碩士論文,民國一百零四年。
    [52] Amy D. Droitcour, “Non-contact Meas of Heart and Respiration Rate with Single-Chip Microwave Doppler Radar,” Ph.D. dissertation, Standford University, 2006.
    [53] M. C. Budge, Jr. and M. P. Burt, “Range correlation effects in radars,” Proc. IEEE Radar Conf., 1993, pp. 212–216.
    [54] T. Y. Huang, L. F. Hayward and J. Lin, "Noninvasive Measurement and Analysis of Laboratory Rat’s Cardiorespiratory Movement," IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 574-581, Feb. 2017.
    [55] 蔣嘉豪,微振動體振動率與位移量之檢測雷達設計,國立中正大學電機工程研究所碩士論文,民國一百零六年。

    下載圖示 校內:2023-08-29公開
    校外:2023-08-29公開
    QR CODE