簡易檢索 / 詳目顯示

研究生: 周阜儒
Chou, Fu-Ju
論文名稱: 組合蛋白αv β3 參與人類重組凝血酶調節素D23誘發的平滑肌細胞移行
Integrin αv β3Is Involved in Recombinant Human Thrombomodulin D23-induced Smooth Muscle Cells Migration
指導教授: 施桂月
Shi, Guey-Yueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 65
中文關鍵詞: 組合蛋白平滑肌細胞
外文關鍵詞: smooth muscle cell, integrin
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝血酶調節素(TM),表現在許多細胞表面。除了最為人所知的抗凝血活性外,凝血酶調節素可能還扮演了其他重要的生物功能。在先前的研究發現,凝血酶調節素除了表現在細胞表面,血清和尿液也有凝血酶調節素片段的存在。在這個研究中,凝血酶調節素的細胞外片段被使用來研究細胞的功能。人類重組凝血酶調節素擁有三個區域,其中第二功能區包含六個重複的類上皮生長因子(EGF-like)功能區,第三功能區則為富含絲胺酸(serine)及羥丁胺酸(Threonine)的功能區。
    重組凝血酶調節素D23(rhTMD23)也可以促進血管平滑肌細胞(VSMCs)的移行。血管平滑肌是組成血管重要的成員之一,血管平滑肌的移行決定性的影響了血管內膜的增厚現象,而這個現象與血管疾病習習相關,其中包含了動脈粥狀化病變。在細胞實驗上,重組凝血酶調節素D23可以有意義的使得附著分子重新分佈至細胞前緣。而我們也證實了FAK、JNK、paxillin 等細胞附著相關的蛋白分子,會受重組凝血酶調節素D23所調控的路徑活化。除此之外,重組凝血酶調節素D23的處理也影響著基質金屬蛋白酶 (MMPs)的訊息核醣核酸表現和其酵素活性,透過這些作用會造成基質金屬蛋白酶切割細胞外基質(例如:膠原蛋白、彈性蛋白、醣蛋白) 。 在調控血管平滑肌細胞的移行的機制中,基質金屬蛋白酶表現的增加扮演著重要角色。
    更進一步的我們發現,重組凝血酶調節素D23可以與組合蛋白avb3連結,並且增加組合蛋白avb3在細胞表面的表現,這個結果顯示,重組凝血酶調節素D23透過與組合蛋白avb3連結,而誘使了血管平滑肌細胞的移行。

    Thrombomodulin (TM) is widely expressed in various cell types. Besides anti-coagulant activity, the well-known function of TM, it may have other important biological functions. The previous study showed that TM fragments are found in serum and urine. In this study, the extracellular TM domain was used to study its cellular functions. Human recombinant TMD23 domain (rhTMD23) containing six tandem epidermal growth factor-like (EGF-like) domains and Ser/Thr rich domain exhibits mitogenic activity and promote endothelial cell (EC) migration. The rhTMD23 could also promotes vascular smooth muscle cells (VSMC) migration. VSMCs are one of important members of aortic vessel and migrate to neointima crucial to the development of intimal thickening that characterizes various vascular diseases, including atherosclerosis. In vitro, rhTMD23 significantly induced redistribution of focal adhesion molecules to cell leading edge. FAK, JNK, paxillin and other focal adhesion protein are activated in rhTMD23-mediated pathways. In addition, rhTMD23 treatment could affect the mRNA expression and activity of matrix metalloproteases (MMPs); thus caused the protease cleave extracellular matrix (e.g., collagens, elastin, proteoglycans). Increased expression of MMPs plays an important role in the regulation of VSMCs migration and is involved in disease processes. Furthermore, we found that rhTMD23 could bind to avb3 integrin and increasing avb3 integrin expression on cell surface. This result suggests that avb3 integrin might midiate rhTMD23-induced VSMC migration.

    Chinese Abstract 1 English Abstract 2 Acknowledgments 3 Content 5 Abbreviation 6 Reagents 7 Figure and Table List 12 Introduction A Thrombomodulin (TM) 13 B Structure and function of TM 14 C Atherosclerosis 15 D Vascular smooth muscle cell (VSMC) 16 E VSMC migration in Physiology  16 Specific Aim 18 Materials and Methods Protein Purification A Yeast Transformation 19 B Expression of recombinant TMD23  21 C Purification of TMD23 22 Molecular Technique D Thrombin Activated Assay 24 E SDS-PAGE  25 F Western Blotting 27 G Sliver Stain 29 H Cell Culture 30 I Solid Phrase Binding Assay 33 J Imuno-fluorescence Stain 34 K Gelatin Zymography 35 L Flow Cytometric Assay 36 Result 38 Discussion 43 Reference 44 Figure and Legend 50 Table 59 Appendixes 60 Resume 65

    1.Maruyama I, Bell CE, Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. The Journal of Cell Biology. 1985;101:363-371.
    2.Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G, Seto M, Morser J, Light DR, Bode W. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature.2000;404:518-525.
    3.Mizutani H, Ohyanagi S, Hayashi T, Groves RW, Suzuki K, Shimizu M. Functional thrombomodulin expression on epithelial skin tumours as a differentiation marker for suprabasal keratinocytes. Br. J. Dermatol. 1996;135:187-193.
    4.Mizutani H, Hayashi T, Nouchi N, Ohyanagi S, Hashimoto K, Shimizu M, Suzuki K. Functional and immunoreactive thrombomodulin expressed by keratinocytes. The Journal of investigative dermatology. 1994;103:825-828.
    5.Bretschneider E, Uzonyi B, Weber AA, Fischer JW, Pape R, Lotzer K, Schror K. Human vascular smooth muscle cells express functionally active endothelial cell protein C receptor. Circulation research. 2007;100:255-262.
    6.Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. Natl. Acad. Sci. U. S. A. 1995;92:850-854.
    7.Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J. Clin. Invest. 1985;76:2178-2181.
    8.Salomaa V, Matei C, Aleksic N, Sansores-Garcia L, Folsom AR, Juneja H, Chambless LE, Wu KK. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet. 1999;353:1729-1734.
    9.Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry. 1987; 26:4350-4357.
    10.Russell DW, Schneider WJ, Yamamoto T, Luskey KL, Brown MS, Goldstein JL. Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell. 1984;37:577-585.
    11.Prieto JH, Sampoli Benitez BA, Melacini G, Johnson DA, Wood MJ, Komives EA. Dynamics of the fragment of thrombomodulin containing the fourth and fifth epidermal growth factor-like domains correlate with function. Biochemistry. 2005;44:1225-1233.
    12.Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S, Yamamoto Y, Yamamoto H, Iino S, Taniguchi N, Maruyama I. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J. Clin. Invest. 2005;115:1267-1274.
    13.Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005;111:1627-1636.
    14.Willis AI, Pierre-Paul D, Sumpio BE, Gahtan V. Vascular smooth muscle cell migration: current research and clinical implications. Vascular and endovascular surgery. 2004;38:11-23.
    15.Ross R. Atherosclerosis--an inflammatory disease. The New England journal of medicine. 1999;340:115-126.
    16.Shah PK. Thrombogenic risk factors for atherothrombosis. Reviews in cardiovascular medicine.2006;7:10-16.
    17.Gerthoffer WT. Mechanisms of vascular smooth muscle cell migration. Circ. Res. 2007;100:607-621.
    18.Schwartz SM. Smooth muscle migration in atherosclerosis and restenosis. The Journal of clinical investigation.1997;100:S87-89.
    19.Wada H, Ohiwa M, Kaneko T, Tamaki S, Tanigawa M, Shirakawa S, Koyama M, Hayashi T, Suzuki K. Plasma thrombomodulin as a marker of vascular disorders in thrombotic thrombocytopenic purpura and disseminated intravascular coagulation. American journal of hematology. 1992;39:20-24.
    20.Ma H, Calderon TM, Kessel T, Ashton AW, Berman JW. Mechanisms of hepatocyte growth factor-mediated vascular smooth muscle cell migration. Circ. Res. 2003;93:1066-1073.
    21.Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta. 2004;1692(2-3):103-119.
    22.Brown MC, Turner CE. Paxillin: adapting to change. Physiol. Rev. 2004;84:1315-1339.
    23.Lin HY, Lansing L, Merillon JM, Davis FB, Tang HY, Shih A, Vitrac X, Krisa S, Keating T, Cao HJ, Bergh J, Quackenbush S, Davis PJ. Integrin alphaVbeta3 contains a receptor site for resveratrol. FASEB J. 2006;20:1742-1744.
    24.Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 2006;69:614-624.
    25.Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K. JNK phosphorylates paxillin and regulates cell migration. Nature.2003;424:219-223.
    26.Shen TL, Guan JL. Differential regulation of cell migration and cell cycle progression by FAK complexes with Src, PI3K, Grb7 and Grb2 in focal contacts. FEBS letters. 2001;499:176-181.
    27.Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 22-29 1994;372:786-791.
    28.Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA. Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 1993;4:197-250.
    29.Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ. Res. 1994;75:539-545.
    30.Antonov AS, Kolodgie FD, Munn DH, Gerrity RG. Regulation of macrophage foam cell formation by alphaVbeta3 integrin: potential role in human atherosclerosis. Am. J. Pathol.2004;165:247-258.
    31.Jenkins GM, Crow MT, Bilato C, Gluzband Y, Ryu WS, Li Z, Stetler-Stevenson W, Nater C, Froehlich JP, Lakatta EG, Cheng L. Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Circulation. 1998;97:82-90.
    32.Li YH, Liu SL, Shi GY, Tseng GH, Liu PY, Wu HL. Thrombomodulin plays an important role in arterial remodeling and neointima formation in mouse carotid ligation model. Thromb. Haemost.2006;95:128-133.
    33.Lukic T, Wasan KM, Zamfir D, Moghadasian MH, Pritchard PH. Disodium ascorbyl phytostanyl phosphate reduces plasma cholesterol concentrations and atherosclerotic lesion formation in apolipoprotein E-deficient mice. Metabolism. 2003;52:425-431.

    無法下載圖示 校內:2106-07-31公開
    校外:2106-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE