簡易檢索 / 詳目顯示

研究生: 吳柏慶
Wu, Po-Ching
論文名稱: 低溫氣相冷凝技術成長氧化鎂鋅薄膜與研製發光二極體元件
Fabrication and investigation of light emitting diodes with MgZnO thin film grown by vapor cooling condensation technique
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 氧化鎂鋅低溫氣相冷凝系統
外文關鍵詞: MgZnO, Vapor Cooling Condensation System
相關次數: 點閱:118下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中利用低溫氣相冷凝系統(Vapor Cooling Condensation System)成長高品質之氧化鎂鋅薄膜,並研製氧化鎂鋅/氧化鋅/氧化鎂鋅雙層異質結構之p-i-n發光二極體元件來展示氧化鎂鋅薄膜之應用潛力。相較其他基板為高溫之製作方式,本研究在低溫環境下成長之薄膜可有效降低載子缺陷濃度成為高品質之薄膜,並有助於半導體元件製程之整合。
    論文中低溫成長之氧化鎂鋅薄膜具有高絕緣性,其薄膜光學能隙為4.01電子伏特,鎂含量約佔28,且在X光繞射之量測分析上可觀察到氧化鎂鋅相較氧化鋅(002)晶相之繞射峰值32.95度,其(002)晶相繞射峰值在33.05度,有往大角度偏移之現象。
    同時應用氧化鎂鋅/氧化鋅/氧化鎂鋅雙層異質結構作為p-i-n發光二極體元件之主動層,並以二氧化鈦及二氧化矽薄膜作元件之側面與表面護佈減少漏電流,同時以主動層僅為氧化鋅薄膜之p-i-n發光二極體元件作為對照。兩組p-i-n發光二極體元件之電激發光峰值皆在380nm,但利用氧化鎂鋅/氧化鋅/氧化鎂鋅雙層異質結構之p-i-n發光二極體元件其電激發光頻譜發光峰值強度與發光功率分別增加3.08倍與1.82倍,因此藉由氧化鎂鋅與氧化鋅能階不連續使得載子侷限於主動層氧化鋅區域增加復合發光效率,可有效提升元件發光效率。由於藉由低溫氣相冷凝法成長之i-ZnO薄膜具有極低之缺陷濃度,故在電激發光頻譜可見光區域因氧缺陷造成之缺陷發光其發光強度相當微弱。

    In this thesis, the high quality magnesium-zinc-oxide (MgZnO) thin film deposited by the vapor cooling condensation system was used to fabricate the MgZnO/ZnO/MgZnO double heterostructured-p-i-n light emitting diodes. Comparing with the other traditional high temperature processing method, the defect concentration of the MgZnO thin film deposited on substrate using the vapor cooling condensation system at low temperature was effectively reduced by using the cooling function of liquid nitrogen. The experimental results demonstrated the technology was helpful to the integration of semiconductor devices process.
    The MgZnO thin film deposited by the vapor cooling condensation system in this work showed the excellent insulating ability. The optical energy band gap of the resulting MgZnO film was 4.01 eV. It could be deduced that the Mg content of the MgZnO film was about 28 %. The strong diffraction peak located at 33.05 and 32.95 were observed in the XRD pattern of the MgZnO and ZnO thin film corresponding to (0 0 2) plane. Comparing to the ZnO diffraction peak, a clear shift of the MgZnO (0 0 2) diffraction peak could be found, which was ascribed to the decrease of the c-axis lattice constant due to Mg incorporation.
    The MgZnO/ZnO/MgZnO double heterostructrue was used as the active layer of the p-i-n light emitting diodes. The titanium dioxide (TiO2) and silicon dioxide (SiO2) thin film were utilized to passivate the device and to avoid leakage current. From the electroluminance spectra of two p-i-n light emitting diodes, their emitting peak was 380nm. However, the peak intensity and the total emission power of the MgZnO/ZnO/MgZnO p-i-n light emitting diodes were 3.08 times and 1.82 times higher than those of the p-AlGaN/i-ZnO/n-ZnO:In p-i-n light emitting diodes. The performance improvement of the MgZnO/ZnO/MgZnO p-i-n light emitting diodes was attributed to the confinement of electrons and holes made by MgZnO barrier layers, and the enhancement of the radiative recombination rate in the active ZnO layer. Moreover, the EL intensity of the emission at the visible region induced by the oxygen vacancy in the i-ZnO layer of the p-i-n LEDs was small enough. It was attributed to the reduced defect concentration in the i-ZnO layer deposited by the vapor cooling condensation system.

    目錄 中文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 /1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 參考文獻 4 第二章 背景理論 /5 2.1 發光二極體(Light Emitting Diodes, LED)之工作原理 5 2.2 氧化鋅與氧化鎂鋅(ZnO, MgZnO)之材料特性 6 2.3 薄膜特性分析原理 7 2.3-1 薄膜沉積方式 7 2.3-2 氧化鎂鋅薄膜鋅鎂比例之計算 8 2.3-3 薄膜光學能隙之計算 8 2.4 p-i-n發光二極體元件之結構設計 9 2.5 硫化處理 10 參考文獻 11 第三章元件製程 /21 3.1低溫氣相冷凝系統(Vapor Cooling Condensation System ) 21 3.1-1 低溫氣相冷凝系統操作流程 22 3.1-2實驗蒸鍍材料 23 3.2 試片結構 23 3.3 元件製程 24 3.3-1製作歐姆接觸之環狀金屬電極 24 3.3-2定義主動區 26 3.3-3低溫氣相冷凝法成長發光二極體元件之主動層與n層 27 3.3-4 製作元件N電極 28 3.3-5 元件作氧化層護佈 30 3.4量測儀器與系統 32 3.4-1霍爾效應量測系統 32 3.4-2 光激發光量測系統 32 3.4-3電激發光量測系統 33 參考文獻 34 第四章 元件量測與結果討論 /47 4.1基板特性 48 4.2薄膜量測分析 48 4.2.1 薄膜光學能隙與成份分析 49 4.2-2 薄膜電性分析 49 4.2-3 光激發螢光量測分析 50 4.2-4 X光繞射量測分析 51 4.3發光二極體元件特性量測 51 4.3-1元件金屬電極之接觸特性 52 4.3-2發光二極體元件I-V特性 53 4.3-3發光二極體元件EL特性 53 參考文獻 55 第五章 結論與未來展望 /66

    第一章 緒論
    [1] X. Dong, Y. Liu, K. Huang, W. Zhao, Y. Ye, X. Xia, Y. Zhang, J. Wang, B. Zhang, and G. Du, “Study on the p-MgZnO/i-ZnO/n-MgZnO light-emitting diode fabricated by MOCVD,” J. Phys. D: Appl. Phys., vol. 42, pp. 235101-1-235101-4,2009.
    [2] H. Tanaka, S. Fujita, and S. Fujita, “Fabrication of wide-band-gap MgxZn1−xO quasi-ternary alloys by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 86, pp. 192911-1-192911-3, 2005.
    [3] Y.-L. Wang, F. Ren, H. S. Kim, D. P. Norton, and S. J. Pearton, “Materials and process development for ZnMgO/ZnO light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 14, pp.1048-1052, 2008
    [4] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photon. Technol. Lett., vol. 20, pp. 2108-2110, 2008.
    [5] M. Wei, H. Deng, H.Chen, and J. J. Chen, “Characteristics of ZnMgO thin films prepared by the Sol-gel method,” Advanced Materials Research, vols. 60-61, pp. 110-113, 2009.
    [6] K. Yoshino, M. Oshima, Y. Takemoto, S. Oyama, and M. Yoneta, “Optical and electrical characterization of In-doped ZnMgO films grown by spray pyrolysis method,” Phys. Status Solidi C, vol. 6, pp. 1120–1123, 2009.

    第二章 背景理論
    [1] S. M. Sze, Semiconductor Devices:Physics and Technology, Wiley, Chichester, 2002.
    [2] 郭浩中、賴芳儀、郭守義,「LED原理與應用」,五南圖書出股份有限公司,2009。
    [3] 金開聖,「氧化鋅薄膜分析與發光二極體元件製作」,中華技術學院電子工程研究所碩士論文,2005年。
    [4] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photon. Technol. Lett., vol. 20, pp. 2108-2110, 2008.
    [5] 吳榮勛,「低溫下利用氣相冷凝技術成長氧化鋅奈米結構光學特性分析」,國立成功大學微電子工程研究所碩士論文,2006年。
    [6] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, “p-ZnO/n-GaN heterostructure ZnO light-emitting diodes,” Appl. Phys. Lett., vol. 86, pp. 222101-1-222101-3, 2005.
    [7] T. H. Moon, M. C. Jeong, W. Lee, and J. M. Myoung, “The fabrication and characterization of ZnO UV detector,” Appl. Surf. Sci., vol. 240, pp. 280-285, 2005.
    [8] K. Ramamoorthy, M. Arivanandhan, K. Sankaranarayanan, and C. Sanjeeviraja, “Highly textured ZnO thin films: a novel economical preparation and approachment for optical devices, UV lasers and green LEDs,” Mater. Chem. Phys., vol. 85, pp. 257-262, 2004.
    [9] 汪吉祥,「ZnO/MgZnO 發光二極體的光電特性」,中華技術學院電子工程研究所碩士論文,2005年。
    [10] K. Maejima, H. Shibata, H. Tampo, K. Matsubara, S. Niki, “Characterization of Zn1−xMgxO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering,” Thin Solid Films, vol. 518, pp. 2949–2952, 2010.
    [11] 王銘毅,「氧化鎂鋅紫外光偵檢器之製作及特性研究」,國立虎尾科技大學,2007年。
    [12] 姜雪涵,「Zn1-xMgxO及Zn1-yFeyO奈米柱之成長與特性分析」,國立成功大學化學工程研究所碩士論文,2005年。
    [13] Y. S. Chang, C. T. Chien, C. W. Chen, T. Y. Chu, H. H. Chiang, C. H. Ku, J. J. Wu, C. S. Lin, L. C. Chen, and K. H. Chen, “Structural and optical properties of single crystal Zn1−xMgxO nanorods—Experimental and theoretical studies,” J. Appl. Phys., vol. 101, pp.033502-1-033502-7, 2007.
    [14] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.

    第三章元件製程
    [1] C. T. Lee, Y. H. Lin, L. W. Lai, and L. R. Lou, “Mechanism investigation of p-i-n ZnO-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 22, pp. 30-32, 2010.
    [2] 邱雅蘭,「利用光電化學法之閘極掘入氮化鋁鎵/氮化鎵金氧半高速電子遷移率電晶體其特性研究」,國立成功大學光電科學與工程研究所碩士論文,2008年6月。
    [3] 謝嘉民、賴一凡、林永昌、枋志堯,「光激發螢光量測的原理、架構及應用」,奈米通訊第12卷2期,2005年。

    第四章 元件量測與結果討論
    [1] H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Höpler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, and H.-J. Körner, “Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1-xN films,” Appl. Phys. Lett., vol. 71, pp. 1504-1506, 1997.
    [2] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.

    下載圖示 校內:2016-09-05公開
    校外:2016-09-05公開
    QR CODE