簡易檢索 / 詳目顯示

研究生: 陳泓允
Chen, Hung-Yun
論文名稱: 用於即時逃生系統的快速火災預測方法
A Speedup Fire Prediction for Online Evacuation Planning System
指導教授: 蔡佩璇
Tsai, Pei-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 82
中文關鍵詞: 火災模擬煙霧擴散模型ConvLSTMFDS
外文關鍵詞: Fire simulation, Smoke spread model, ConvLSTM, FDS
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的火災模擬通常被用做評估或預測火災發生的情況,火災模擬讓我們得以火災預測特定環境中火災的發展情況以及各項數據。但為了進行與現實情況接近的模擬,涉及了許多複雜的計算過程,這需要花費非常大量的計算資源。計算量大帶來的大量耗時,也因此難以在分秒必爭的火災發生時用來進行模擬火災的發展情況。
    火災發生時規劃逃生路徑需要對火災的現況與未來的發展有所了解,才能夠規劃出安全的逃生路徑,避免逃生時發生未預期的危害。因此若有快速的火災模擬可以在火災初期完成,將可以使逃生規劃更加完善與安全。
    本文提出了兩種即時火災危險區域預測的方法。第一種為網格屬性預測法,透過記錄並學習傳統火災模擬方法的模擬結果,使用簡單的計算方法在數秒內輸出火災發生時未來危險區域的可能擴散情形;第二種為圖像序列預測法,將學習時間序列的模擬資料,透過火災發生時的即時危險區域資料推估後續危險區域擴散的情形。兩種方案將透過實驗了解其性能及實際應用上的可行性。
    此項研究的輸出可做為火災發生時迅速進行決策的依據,例如進行火場逃生路徑規畫時可增加即時火災危險區域預測的結果作為輸入,得以規劃全程安全且正確的逃生路徑。

    Nowadays, fire simulation is usually used to evaluate or predict the occurrence of fire. Fire simulation allows us to predict the development of fire in a specific environment and various data. However, in order to simulate as close to the real situation as possible, many complicated calculation processes are involved, which requires a very large amount of computing resources. The large amount of calculations brings a lot of time and it is therefore difficult to simulate the development of a fire when every second counts.
    Planning an escape route when a fire occurs requires an understanding of the current situation and future development of the fire dangerous area in order to plan a safe escape route and avoid unexpected dangers during escape. Therefore, if there is a fast fire prediction that can be completed in the early stage of the fire, it will make the escape planning more complete and safer.
    This paper proposes two methods for real-time fire dangerous area prediction. The output of this research can be used as a basis for rapid decision-making when a fire occurs. For example, when planning a fire escape route, the current and future hazardous area distribution can be considered to find a correct and safe escape route.

    摘要 I Extended Abstract II 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第1章 緒論(INTRODUCTION) 1 1.1 研究背景(Research Background) 1 1.2 研究動機(Motivation) 3 1.3 網格屬性預測法研究目標(Research Objectives of Grid Attributes based prediction) 5 1.4 圖像序列預測法研究目標(Research Objectives of Image Sequence based prediction) 6 1.5 實驗(Experiment) 7 1.6 貢獻(Contribution) 8 1.7 論文架構(Paper Architecture) 8 第2章 文獻探討(RELATED WORKS) 10 2.1 火災知識(Fire Knowledge) 10 2.2 FDS與Pyrosim(Fire Dynamics Simulator and Pyrosim) 12 2.3 FDS相關研究(FDS Related Research) 12 2.4 火災對策與物聯網(Fire Strategies and Internet of Things) 13 2.5 逃生路徑規劃(Escape Path Planning) 14 2.6 ConvLSTM與其相關研究(ConvLSTM and Related Research) 14 第3章 系統架構與應用情境(SYSTEM ARCHITECTURE AND APPLICATION SCENARIOS) 16 3.1 應用情境與危險區域定義(Application Scenarios and Dangerous Area Definition) 16 3.2 系統架構與流程(System Architecture and Running Process) 17 第4章 解決方案(SOLUTIONS) 21 4.1 網格屬性預測法(Grid Attributes Based Prediction) 21 4.2 圖像序列預測法(Image Sequence Based Prediction) 30 第5章 實驗(EXPERIMENT) 39 5.1 環境設置(Environment Setting) 39 5.2 資料集(Data Set) 42 5.3 網格屬性預測法實驗設計(Experiment Design of Grid Attributes based Prediction) 44 5.4 圖像序列預測法實驗設計(Experiment Design of Image Sequence based Prediction) 46 5.5 評估指標(Indicators) 50 5.6 網格屬性預測法實驗結果與分析(Results and Analysis of Grid Attributes based Prediction) 53 5.7 圖像序列預測法實驗結果與分析(Results and Analysis of Image Sequence based Predition) 57 第6章 總結(CONCLUSION) 72 6.1 結論(Conclusion) 72 6.2 應用限制(Application Restrict) 74 6.3 未來方向(Future Works) 75 參考文獻(REFERENCE) 76 附錄(APPENDIX) 81

    [1] 中華民國內政部消防署,「106年全國火災統計分析」,2018。
    [2] 林金宏,「活著離開3」,雙葉書廊,台灣,2018。
    [3] Bjorn Karlsson, James G. Quintiere, “Enclosure Fire Dynamics,” 2000.
    [4] Forney, Glenn P, “Smoke View(Version 5)-A Tool For Visualizing Fire Dynamice Simulation Data, Volume I : User’s Guide.” No. Special Publication (NIST SP)-1017-1,2017.
    [5] P. Smardz, V. Novozhilov, “Validation of Fire Dynamics Simulator (FDS) for forced and natural convection flows,” University of Ulster, pp. 16-20, 2006.
    [6] 黃育祥(2005)。應用火災工學與火災模擬軟體FDS於火場之重建。中央警察大學消防科學研究所碩士論文,桃園縣。 取自https://hdl.handle.net/11296/7b7wxc
    [7] Jen-Hao Chi, “Reconstruction of an Inn Fire Scene Using the Fire Dynamics Simulator (FDS) Program,” Journal of Forensic Sciences, vol. 58, 2012, pp. S227-S234.
    [8] J. Wahlqvist and P. van Hees, “Evaluating methods for preventing smoke spread through ventilation systems using fire dynamics simulator,” Fire and Materials, vol. 41, no. 6, 2016, pp. 625-645.
    [9] T. Liang, J. Liu, and P. Tao, “The Implementation of the Numerical Simulation by Utilization of Pyrosim on the Rectification of the Hazard of Fires,” Proceedings of the 11th International Conference on Computer Modeling and Simulation - ICCMS 2019, 2019, pp. 31-35.
    [10] Z. Chaczko and F. Ahmad, “Wireless Sensor Network Based System for Fire Endangered Areas,” Third International Conference on Information Technology and Applications (ICITA'05), Sydney, NSW, 2005, pp. 203-207.
    [11] K. Sha, W. Shi and O. Watkins, “Using Wireless Sensor Networks for Fire Rescue Applications: Requirements and Challenges,” 2006 IEEE International Conference on Electro/Information Technology, East Lansing, MI, 2006, pp. 239-244.
    [12] J. Lloret, M. Garcia, D. Bri, and S. Sendra, “A wireless sensor network deployment for rural and forest fire detection and verification,” Sensors (Basel, Switzerland), vol. 9, no. 11, Jan. 2009, pp. 8722-8747.
    [13] A. Filippoupolitis and E. Gelenbe, “A Distributed Decision Support System for Building Evacuation,” 2009 2nd Conference on Human System Interactions, Catania, 2009, pp. 323-330.
    [14] G. Gorbil, A. Filippoupolitis and E. Gelenbe, “Intelligent Navigation Systems for Building Evacuation,” Computer and Information Sciences II, 2011, pp. 339-345.
    [15] A. Filippoupolitis and E. Gelenbe, “An Emergency Response System for Intelligent Buildings,” Sustainability in Energy and Buildings, vol. 12, 2012, pp. 265-274.
    [16] J. Liu, R. Rojas-Cessa and Z. Dong, “Sensing, calculating, and disseminating evacuating routes during an indoor fire using a sensor and diffusion network,” 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), Mexico City, 2016, pp. 1-6.
    [17] 蔡依芸(2020)。基於數位孿生架構之建築消防系統火災模擬。國立成功大學製造資訊與系統研究所碩士論文,台南市。 取自https://hdl.handle.net/11296/6hx7nx
    [18] M. Birky, B. Halpin, Y. Caplan, R. Fisher, J. McAllister and A. Dixon, “Fire fatality study,” Fire and Materials, vol. 3, no. 4, 1979, pp. 211-217.
    [19] 國家地震工程研究中心,「建築的構成」,檢自http://streethouse.ncree.narl.org.tw/03.html(Apr.21,2020)。
    [20] Lianfa Li, Ying Fang, Jun Wu, Jinfeng Wang, “Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation,” arXiv:1812.11262, 2018.
    [21] Zenghao Chai, Chun Yuan, Zhihui Lin, Yunpeng Bai, “CMS-LSTM: Context-Embedding and Multi-Scale Spatiotemporal-Expression LSTM for Video Prediction,” arXiv:2102.03586, 2021.
    [22] ThunderHead Eng, “ImportCAD-4,” ThunderHead Eng, 2019.
    [23] Myung Bae Kim, Yong Shik Han, Myoung O. Yoon, “Laser-assisted visualization and measurement of corridor smoke spread,” Fire Safety Journal Volume 31, Issue 3,1998, pp. 239-251.
    [24] 陳弘毅,「火災學」,大碩教育,2019。
    [25] 葉冠廷(2019)。用於數位孿生建築消防系統之逃生演算法。國立成功大學製造資訊與系統研究所碩士論文,台南市。 取自https://hdl.handle.net/11296/8ujkjx
    [26] S. Ahmed, M. Liwicki, M. Weber and A. Dengel, “Automatic Room Detection and Room Labeling from Architectural Floor Plans,” 2012 10th IAPR International Workshop on Document Analysis Systems, 2012, pp. 339-343.
    [27] Jiachen Zhao, Fang Deng, Yeyun Cai, Jie Chen, “Long short-term memory - Fully connected (LSTM-FC) neural network for PM2.5 concentration prediction,” Chemosphere, Volume 220, pp. 486-492, 2019.
    [28] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, Wang-chun Woo, “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,” arXiv:1506.04214, 2015.
    [29] Li Yang, Xu Huahu, Bian Minjie, Xiao Junsheng, "Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition" Sensors, Volume 20, no. 3, 2020.
    [30] L. Zhang, G. Zhu, L. Mei, P. Shen, S. A. A. Shah, and M. Bennamoun, “Attention in convolutional LSTM for gesture recognition,” in Proc. NIPS, 2018, pp. 1953-1962.
    [31] John Burge, Matthew Bonanni, Matthias Ihme, Lily Hu, “Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics,” arXiv:2012.06679, 2020.
    [32] V. Le, T. Bui and S. Cha, “Spatiotemporal Deep Learning Model for Citywide Air Pollution Interpolation and Prediction,” 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, pp. 55-62.
    [33] Seongchan Kim, Seungkyun Hong, Minsu Joh, Sa-kwang Song, “DeepRain: ConvLSTM Network for Precipitation Prediction using Multichannel Radar Data,” arXiv:1711.02316, 2017.
    [34] D. Wang, Y. Yang and S. Ning, “DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction,” 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1-8.
    [35] Y. Zhou, H. Dong and A. El Saddik, “Deep Learning in Next-Frame Prediction: A Benchmark Review,” in IEEE Access, vol. 8, pp. 69273-69283, 2020.
    [36] Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim Salimans, Shreya Agrawal, Jason Hickey, Nal Kalchbrenner, “MetNet: A Neural Weather Model for Precipitation Forecasting,” arXiv:2003.12140, 2020.
    [37] Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, Philip S. Yu, “PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning,” arXiv:1804.06300, 2018.
    [38] Bernard Lange, Masha Itkina, Mykel J. Kochenderfer, “Attention Augmented ConvLSTM for Environment Prediction,” arXiv:2010.09662, 2020.
    [39] Zhihui Lin, Maomao Li, Zhuobin Zheng, et al. “Self-attention convlstm for spatiotemporal prediction,” AAAI 2020, pp. 11531-11538, 2020.

    無法下載圖示 校內:2026-07-28公開
    校外:2026-07-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE