簡易檢索 / 詳目顯示

研究生: 葉鴻偉
Yeh, Hung-Wei
論文名稱: 全息曝光製程條件對聚合物分散液晶盒製作透鏡陣列全息光學元件之性能影響
Optical performance affected by holographic exposure processes in polymer dispersed liquid crystal cells to fabricate holographic optical elements as lens arrays
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 全息光學元件聚合物分散液晶盒投影式積分成像系統
外文關鍵詞: Holographic optical element, Polymer dispersed liquid crystal cell, Projection-type integral imaging system
相關次數: 點閱:128下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討全息曝光製程條件對聚合物分散液晶盒所製得之透鏡陣列全息光學元件性能之影響。將垂直入射於一壓克力透鏡陣列之平行光束當作物光與另一平行光束當作參考光,兩光束以反平行波向量垂直入射於聚合物分散液晶盒中進行干涉並將其光學訊息記錄於液晶盒中。製程後的透鏡陣列全息光學元件可直接利用偏光顯微鏡(Polarization optical microscope , POM)觀察所獲得之菲涅耳區(Fresnel zone)的圖樣,藉以了解其光學能力與製程條件之相關性。
    聚合物分散液晶盒所填入之混合材料組成包含40 wt% 液晶E7、55 wt%光聚合單體DPHPA,以及5 wt%光起始劑(由0.5 wt% H-Nu-Blue 640、0.5 wt% Borate-V與4 wt% NVP所組成)。為了了解所完成之透鏡陣列全息光學元件其成像能力,實驗將其應用於投影式積分成像系統,觀察其呈現之立體影像情形。
    此外,所製得之透鏡陣列全息光學元件可藉由施加電壓達到透鏡功能開關的目的,並具備偏振無關之光學特性。

    The holographic optical elements (HOEs) as lens arrays were fabricated in polymer dispersed liquid crystal (PDLC) cells via holographic exposure with a He–Ne laser, which optical performance related to fabrication conditions was investigated and compared with same type of HOEs made with photopolymer films. The fabricated PDLC HOEs show good performance of lens arrays as well as the template of acrylic lens array, which were also applied in the integral imaging system to show good imaging reconstruction. In conclusion, the PDLC HOEs as lens arrays are successfully fabricated with characteristics of polarization-independence, Bragg’s reflective gratings with selections of wavelengths and reflective directions, which are also potentially used in the integral imaging system instead of conventional lens arrays.

    摘要 I Abstract II 誌謝 XVII 目錄 XVIII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 實驗原理 8 2.1 液晶介紹 8 2.1.1 向列型液晶 9 2.1.2 液晶分子的雙折射特性 9 2.1.3 液晶受外加電場時的變化 11 2.2 液晶與光聚合物單體混合物 12 2.3 全息曝光製程與全息光學元件介紹 14 2.3.1 光學干涉原理 14 2.3.2 全息曝光光路與透鏡陣列全息光學元件的介紹[6][7] 17 2.4 積分成像系統[16] 19 第三章 實驗材料與相關設置 21 3.1 實驗材料 21 3.2 樣品製作流程 25 3.2.1 液晶與光聚合單體混合物的配製 25 3.2.2 液晶與光聚合單體混合物的灌注 26 3.3 製作全息光學元件之相關實驗設置 27 3.3.1 製作全息光學元件之實驗儀器設備 27 3.3.2 製作全息光學元件之光路架設 29 3.4 投影式積分成像系統的架設 32 3.4.1 投影式積分成像系統的相關實驗設備 32 3.4.2 投影式積分成像系統的設置 34 第四章 實驗結果與討論 35 4.1 透鏡陣列全息光學元件於不同錄製角度下的比較 35 4.2 不同全息曝光製程條件對聚合物分散液晶盒的影響 43 4.2.1 聚合物分散液晶盒在不同全息曝光條件下的光學表現 44 4.2.2 聚合物分散液晶盒在不同錄製間距下其光學表現的比較 50 4.2.3 比較聚合物分散液晶盒與壓克力透鏡陣列的可視角範圍 54 4.3 散射程度對聚合物分散液晶盒其光學性能的影響 56 4.4 量測聚合物分散液晶盒其電壓調控之特性 58 4.5 量測聚合物分散液晶盒其相關的偏振特性 61 4.5.1 聚合物分散液晶盒在不同偏振方向入射光下的光學表現 61 4.5.2 聚合物分散液晶盒在非偏振光下觀察的結果 70 4.6 觀察聚合物分散液晶盒中內部材料的聚合情形 74 第五章 結論與未來展望 76 5.1 結論 76 5.2 未來展望 77 參考文獻 81

    [1]D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)
    [2]E.N. Leith, J. Upatnieks, “Reconstructed wavefronts and communi cation theory,” J. Opt. Soc. Am., 52, 1123 (1962)
    [3]E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with continuous-
    tone objects,” J. Opt. Soc. Am., 53, 1377 (1963)
    [4]E.N. Leith, J. Upatnieks, “Wavefronts reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am., 54, 1295 (1964)
    [5]K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality, ”Opt. Lett.,39(1), 127-130(2014)
    [6]H. L. Zhang, H. Deng, W. T. Yu, M. Y. He, D. H. Li, Q. H. Wang, “Tabletop augmented reality 3D display system based on integral imaging,” JOSA. B 34(5) (2017)
    [7]K. Hong, J. Yeom, C. Jang, J. Hong, B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. lett., 30(1), 127-131 (2014)
    [8]松本正一、角田市良,“液晶之基礎與應用” 第八版,第四章,國立 編譯館,民國94年
    [9]Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 1, John Wiley & Sons (2006)
    [10]Toralf Scharf, “Polarized Ligh in Liquid Crystal and Polymers,” Chap. 6, John Wiley & Sons (2007)
    [11] Amnon Yariv, Pochi Yeh, “Optical Electronics in Modern Communications,” 6th. Edition, Chap. 1, Oxford University Press Inc. (2007)
    [12]Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)
    [13]Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 11 , John Wiley & Sons (2006)
    [14]F. L. Pedrotti, “Introduction to Optics,” 3rd. Edition, Chap. 7, Addison Wesley (2007)
    [15]R. J. Collier, C.B. Burckhardt, L.H. Lin, “Optical Holography,” Academic Press New York and London (1971)
    [16]P. Yeh, “ Introduction to Photorefractive Nonlinear Optics, ” Wiley, New York (1993)
    [17]L. C. Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
    [18]Y. H. Cho, B. K. Kim, and K. S. Park, “Optimization of holographic polymer dispersed liquid crystal for ternary monomers,” Polym. Int., 48, 1085-1090 (1999)
    [19]Spectra group Limited Inc., “H-Nu Blue 640, 660 Visible Light Photo initiators”
    [20]J. Y. Woo, E. H. Kim, T. H Yoon, J. C. Kim, and B. K. Kim, “Photoswitching of holographic polymer-dispersed liquid crystals doped with chiral dopant,” Liq. Cryst.,34(9), 1115-1120(2007)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE