簡易檢索 / 詳目顯示

研究生: 劉煒薪
Liu, Wei-Hsin
論文名稱: 用同結構之氫氧化鋰改造硒化鐵特性之研究
The Study on the Modification of FeSe with Isostructural LiOH
指導教授: 齊孝定
Qi, Xiao-ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 117
中文關鍵詞: 超導體大體積壓力機硒化鐵高壓
外文關鍵詞: FeSe, (Li0.4Fe0.6)OHFeSe, superconductor
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由氫氧化鋰與硒化鐵(PbO type – FeSe)同屬同一空間群與結構相似性,以高壓粉末固態燒結法對硒化鐵系統進行化學摻雜,藉由鐵硒比例、壓力、溫度、燒結時間、後續退火製程……等參數的改變,試圖找尋其固溶體穩定的相區與純化該固溶體之條件,藉由觀察超導特性與晶格常數的變化,探討氫氧化鋰化學固溶對硒化鐵的影響。
    從實驗過程中也同時發掘新穎鐵基超導體材料(LixFe1-X)OHFeSe,同年文獻記載以水熱法之方式合成的(LixFe1-x)OHFeSe (x=0.8)其臨界超導溫度(Tc)相對於硒化鐵上升至40K,本研究利用大體積壓力機給予外加高壓嘗試純化(LixFe1-X)OHFeSe相,並改變壓力,試圖探討對其超導特性之影響。

    This work attempts to modify the PbO-type iron selenide (i.e. the β-phase FeSe) with the isostructural lithium hydroxide (LiOH). It is expected that LiOH may form a solid solution with FeSe under proper thermodynamic conditions and therefore, result in some changes in the superconducting properties of FeSe. The experimental parameters, such as composition, temperature, pressure and heating time, were varied to find the desired phase region. The FeSe-LiOH solid solution containing up to 17 mol% LiOH was formed after sintering at 300 ℃ under 0.75 GPa for 24 hrs, followed by annealing at 160 ℃ under 0.75 GPa for 12 hrs. However, the critical temperature (Tc) was only increased by about 2 K, which reached 10.7 K in the 0.83 FeSe-0.17 LiOH samples. As the LiOH content increased, a new phase was formed, which had the composition (Li0.4Fe0.6)OHFeSe. The new phase showed a possible Tc of 33 K, much higher than the FeSe-LiOH solid solution. The suitable pressure for the formation of the new phase was within the range between 0.75 to 1 GPa, but the accurate phase region for the composition and temperature has yet to be clarified as our samples still contained some other secondary phases.

    摘要 I Extended Abstract II 致謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1前言 1 1-2實驗方向 4 第二章 文獻回顧 5 2-1超導體發展歷程 5 2-1-1超導體的發現 5 2-1-2超導體的發展 6 2-1-3超導體的現今運用與展望. 7 2-2超導體特性 8 2-2-1超導體的基本性質 8 2-2-2超導體的臨界條件 9 2-2-3超導體的類型 11 2-3超導發生之相關理論 12 2-3-1熱力學與超導之關係 12 2-3-2二流體模型 13 2-3-3倫敦(London)方程式 13 2-3-4 BCS理論 15 2-4新穎高溫超導材料 17 2-4-1高溫銅氧超導材料(REBCO體系) 17 2-4-2鐵基超導材料 19 2-4-3鐵基超導與銅基超導之比較 20 2-5鐵基超導硒化鐵 20 2-5-1磁性材料概論 22 2-5-2鐵硒化合物之基本結構介紹 24 2-5-3硒化鐵近期研究 26 第三章 實驗方法與分析儀器 29 3-1實驗儀器設備 29 3-1-1常用設備 29 3-1-2大體積壓力機(Large Volume High Pressure Apparatus) 30 3-2實驗材料與藥品 34 3-2-1實驗藥品與材料 34 3-2-2大體積壓力機專用材料 35 3-3實驗流程 36 3-4性質分析方法 37 3-4-1相鑑定與結構分析(XRD) 37 3-4-2相鑑定(EBSD) 38 3-4-3顯微結構觀察(OM) 38 3-4-4表面形貌與成分分析(SEM) 38 3-4-5元素分析(AES;ICP-MS) 39 3-4-6超導性質檢測(SQUID) 39 第四章 實驗回顧與結果討論 41 4-1常壓下硒化鐵摻雜氫氧化鋰之研究 41 4-1-0有無先去除氫氧化鋰結晶水對摻雜效果之影響 42 4-1-1對FeSe與FeSe0.93摻雜不同比例氫氧化鋰之相鑑定分析 45 4-1-2組成成分 46 4-1-3固相燒結FeSe0.93:17%LiOH之超導性質分析 47 4-1-4小結 49 4-2高壓下硒化鐵摻雜氫氧化鋰之研究 50 4-2-1高壓固相燒結純化摻雜氫氧化鋰之硒化鐵 50 4-2-1-1外加壓力1.25GPa之燒結溫度探討 50 4-2-1-2外加壓力2.5GPa與燒結製程探討 53 4-2-1-3外加壓力0.75GPa之燒結溫度與不同氫氧化鋰摻雜比例探討 64 4-2-2改變樣品囊包之結果分析 72 4-2-3小結 75 4-3新穎材料(LixFe1-x)OHFeSe之研究 76 4-3-1關於(LixFe1-x)OHFeSe之發現與特性探討 76 4-3-1-1(LixFe1-x)OHFeSe之發現與合成 76 4-3-1-2名義成份(Li0.8Fe0.2)OHFeSe燒結樣品之超導特性探討 81 4-3-2(LixFe1-x)OHFeSe於不同壓力下燒結之探討 83 4-3-3高壓固態粉末燒結 (LixFe1-X)OHFeSe之其他實驗發現 88 第五章 結論 92 第六章 參考文獻與資料 93

    1. (http://www.taipower.com.tw/content/new_info/new_info-a58.aspx?LinkID=5)台灣電力公司, “台灣電力公司經營資訊與國際主要電業之比較”
    2. C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, and Y. Q. Wang ” Evidence for Superconductivity above 40 K in the La-Ba-Cu-0 Compound System” Physical Review Letters, 58, 4, 405-407. (1987)
    3. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu ”Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure” Physical Review Letters, 58, 9, 908-910. (1987)
    4. K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, K. Amaya ”Superconductivity in compressed lithium at 20 K” Nature, 419, 6907, 597-599. (2002)
    5. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T, Kamiya, and H. Hosono,”Iron-Based Layered Superconductor: LaOFeP” JACS, 128, 31, 10012-10013. (2006)
    6. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D.C. Yan and M. K. Wu ”Superconductivity in the PbO-type structure α-FeSe” Proceedings of the National Academy of Sciences, 105, 38, 14262-14264. (2008)
    7. http://www.ccas-web.org/superconductivity/#image1,Coalition for the Commercial Application of Superconductors
    8. Javad Heshemi and William F. Smith”Foundations of Materials Science and Engineering, 5e”,Mc Graw Hill.
    9. 張裕恆, 李玉芝,”超導物理”,(1992)
    10. C.J. Gotter and H. Casimir,”On Superconductivity I” Physica, 1, 306-320. (1934)
    11. F. London, H. London,”The electromagnetic equations of the supraconductor” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 149, A866, 0071-0088. (1935)
    12. J.Bardeen, L. N. Cooper, J. R. Schrieffer, “Theory of Superconductivity” Physical Review, 108, 5, 1175-1204. (1957)

    13. S. S. P. Parkin, V. Y. Lee, A. I. Nazzal, R. Savoy, R. Beyers, and S. J. La Placa “Tl1Can−1Ba2CunO2n+3 (n=1,2,3): A New Class of Crystal Structures Exhibiting Volume Superconductivity at up to ≃110 K” physical Review Letters, 61, 750. (1988)
    14. (http://www.phys.aoyama.ac.jp/~w3-jun/achievements/study_sc_type_copper_eng.html), Akimitsu Laboratory
    15. Kamihara, T. Watanabe, M Hirano and H. Hosono” Iron-Based Layered Superconductor La[O1-xFx]FeAs (x= 0.05-0.12)with Tc = 26 K” Journal of the American Chemical Society, 130, 11, 3296. (2008)
    16. Z. A. Ren, W. Lu, J.Yang, W. Yi, X. L. Shen, C.Zheng, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou and Z. X. Zhao “ Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs” Chinese Physics Letters,25 ,2215. (2008)
    17. Michael J. Pitcher, Dinah R. Parker, Paul Adamson, Sebastian J. C. Herkelrath, Andrew T. Boothroyd, Richard M. Ibberson, Michela Brunellid and Simon J. Clarke “ Structure and superconductivity of LiFeAs” Chemical communications, 45, 5918-5920. (2008)
    18. H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, N. L. Wang “Nearly Isotropic superconductivity in (Ba,K)Fe2As2” Nature, 457, 7229, 565-568. (2009)
    19. H. Okamoto, “Journal of Phase Equilibria” Journal of Phase Equilibria, 12, 3, 383-389. (1991)
    20. M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao “Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82” Physical Review B, 78, 22, 224503. (2008)
    21. 陳楠凱 “摻硫及鋰的FeSe之合成及性質研究”, 國立成功大學材料科學與工程研究所碩士論文.(2011)
    22. A. M. Zhang, T. L. Xia, L. R. Kong, J. H. Xiao and Q. M. Zhang ” Effects on superconductivity of transition-metal doping in FeSe0.5Te0.5” Journal of Physical Condense Matter, 22,245701(2010)
    23. Yoshikazu Mizuguchi, Fumiaki Tomioka, Shunsuke Tsuda, Takahide Yamaguchi and Yoshihiko Takano “ Superconductivity at 27 K in tetragonal FeSe under high pressure” Applied Physics Letters, 93, 15,152505. (2008)
    24. S. Medvedev, T.M. McQueen, I. Trojan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann and C. Felser “Superconductivity at 36 K in beta-Fe1.01Se with the compression of the interlayer separation under pressure” Science in China, G54, 719. (2008)
    25. J. Guo, S Jin, G. Wang, S. Wang, K. Zhu, Tingting Zhou, M. He and X. Chen, “Superconductivity in the iron selenide KxFe2Se2”, Physical Review B, 82, 18, 180520. (2010)
    26. Matthew Burrard-Lucas, David G. Free, Stefan J. Sedlmaier, ack D. Wright, Simon J. Cassidy, Yoshiaki Hara, Alex J. Corkett, Tom Lancaster, Peter J. Baker, Stephen J. Blundell and Simon J. Clarke, “Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer”, Nature Materials, 12, 1, 15-19.(2013)
    27. Y. Mizuguchi, Y. Hara, K. Deguchi, S. Tsuda, T. Yamaguchi, K. Takeda, H. Kotegawa, H. Tou and Y. Takano, “Anion height dependence of Tc for the Fe-based superconductor”, Superconductor Science and Technology, 23, 5. (2010)
    28. X. F. Lu, N. Z. Wang, H. Wu, Y. P. Wu, D. Zhao, X. Z. Zeng, X. G. Luo, T. Wu, W. Bao, G. H. Zhang, F. Q. Huang, Q. Z. Huang and X. H. Chen, “Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe”, Nature Materials,14 , 3,325-329. (2015)
    29. 花柏榕”探討不同價態之鎢與不同囊包材質影響橄欖石-金屬鐵之高溫高壓產物相產物關係”,國立成功大學地球科學研究所碩士論文.(2012)
    30. P. J. Florian, S. Y. Chien, J. K. Kung and Y. Wang,”Studying Materials under Extreme Conditions-Introduction of Large Volume High Pressure Apparatus,科儀新知, 34, 1. (2012)
    31. P. Villars, L. D. Calvert, “Pearson’s handbook of crystallographic data for intermetallic phases” ,ASM International. (1991)

    下載圖示 校內:2018-08-27公開
    校外:2018-08-27公開
    QR CODE