| 研究生: |
吳定霖 Wu, Ting-Lin |
|---|---|
| 論文名稱: |
以水熱合成法合成沸石及其長晶路徑之研究 Study on the hydrothermal synthesis of zeolite and its crystal growth pathway |
| 指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 沸石礦物 、天然材料 、表面形貌 、長晶機制 |
| 外文關鍵詞: | Pumice, Zeolite, Hydrothermal synthesis, Crystal growth mechanism |
| 相關次數: | 點閱:131 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗欲觀察浮石轉變為沸石的長晶過程及機制,而在許多文獻中,我們發現儘管它們都已合成出沸石相礦物,但我們也發現了一些問題。首先,它們都在高濃度的NaOH水溶液(1M-5M)中合成。除原料不同外,主要區別是鹽的添加和固液比的不同。高鹼濃度和鹽的添加將使反應極快,但是由於時間短,將難以觀察到中間相的變化。使用低鹼濃度的溶液,實驗反應時間將延長到至少五天以上,與前一種相比,這將使反應時間過長。為了解決上述反應時間太快且合成時間太長等問題,我們配置了低鹼濃度並添加了氯化鈉水溶液來進行實驗。本研究利用水熱合成法合成沸石,透過改變溫度、固液比、鹼濃度、持溫時間及鹽類的添加,觀察不同條件下之礦物相變化;本實驗透過X光粉末繞射儀,分析產物之晶體結構及長晶變化,並用拉曼光譜儀得出特徵振動模驗證所得礦物相,並了解不同時段的振動模變化,再利用掃描式電子顯微鏡觀察產物之形貌及不同時間的差異,最後使用原子力顯微鏡掃描其形貌觀察更小尺寸的產物晶體表面,並探討其長晶機制,此外也比較了以不同的天然原料在相同實驗條件下進行水熱合成所得到的產物進行探討。
在非即時實驗中,改變了持溫時間,觀察到其長晶過程為:浮石 → 鈉長石 → 鈣十字沸石/沸石Na-P1 → 沸石Na-P1。由實驗可知,整體產物以沸石Na-P1為主,鈣十字沸石在高溫低鹼濃度下產生,鈉長石始終存於反應中。本研究透過探討長晶時間之變化與各種不同條件下,對沸石長晶過程之影響,藉此長晶實驗盡量模擬自然界中實驗室可控條件,對沸石礦物生成機制之影響有所了解。
In this study, hydrothermal synthesis was used to synthesize zeolite. By changing the temperature, solid-liquid ratio, alkali concentration, holding time and addition of salts, the mineral phase changes under different conditions were observed; this experiment was analyzed by X-ray powder diffractometer The crystal structure and long crystal change of the product, and use the Raman spectrometer to obtain the characteristic vibration mode to verify the obtained mineral phase, and understand the vibration mode change at different periods, and then use the scanning electron microscope to observe the product morphology and the difference between different times. An Atomic force microscope was used to scan its morphology to observe the surface of the product crystals of smaller size, and to explore its crystal growth mechanism. In addition, the products obtained by hydrothermal synthesis using different natural materials under the same experimental conditions were also compared.
In the experiment, the temperature holding time was changed, and the process of crystal growth was observed as follows: Pumice→Albite→Phillipsite/Zeolite Na-P1→Zeolite Na-P1. It can be seen from the experiment that the overall product is mainly zeolite Na-P1, phillipsite is produced at high temperature and low alkali concentration, and albite is always present in the reaction. And use AFM to observe the zeolite Na-P1 to understand its crystal growth mode is spiral growth, and its mechanism is poly-nuclear Birth and Spread Models. This study explores the effect of crystallization time and various conditions on the zeolite crystallization process to understand the effect of the zeolites mineral formation mechanism.
參考文獻
Adisaputra, M. K., & Kusnida, D. (2010). Paleocene postgenetic Accumulation of Nannoplankton on the Phillipsite Minerals in Roo Rise, Indian Ocean. Indonesian Journal on Geoscience, 5(1), 49-56.
Agger, J. R., Shöâeè, M., Mistry, M., & Slater, B. (2006). Crystal growth of analcime studied by AFM and atomistic simulation. Journal of crystal growth, 294(1), 78-82.
Aygun, Z., & Aygun, M. (2016). Spectroscopic analysis of Ahlat stone (ignimbrite) and pumice formed by volcanic activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 166, 73-78.
Baccouche, A., Srasra, E., & El Maaoui, M. (1998). Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite–smectite. Applied Clay Science, 13(4), 255-273.
Baerlocher, C., McCusker, L. B., & Olson, D. H. (2007). Atlas of zeolite framework types. Elsevier.
Bargar, K. E., Keith, T. E., & Trusdell, F. A. (1995). Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii. Geothermics, 24(5-6), 639-659.
Barrer, R. M. (1981). Zeolites and their synthesis. Zeolites, 1(3), 130-140.
Barthomeuf, D. (1991). Acidity and basicity in zeolites. In Studies in Surface Science and Catalysis (Vol. 65, pp. 157-169). Elsevier.
Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1-23.
Buhl, J. C. (2016). On the autothermal synthesis of zeolites. Microporous and Mesoporous Materials, 222, 73-79.
Burriesci, N., Saija, L. M., Ottanà, R., Giordano, N., & Bart, J. C. J. (1983). Influence of temperature on hydrothermal synthesis of zeolites from Lipari pumice. Materials Chemistry and Physics, 8(4), 305-314.
Burriesci, N., Arcoraci, C., Giordano, N., & Antonucci, P. L. (1985). Zeolites from pumice and tuff as evaluation of pozzolanic cement constituents. Zeolites, 5(2), 96-100.
Burriesci, N., Crisafulli, M., Giordano, N., & Antonucci, P. L. (1986). Iron-free zeolites from Lipari pumice. Zeolites, 6(2), 119-124.
Cardoso, A. M., Paprocki, A., Ferret, L. S., Azevedo, C. M., & Pires, M. (2015). Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel, 139, 59-67.
Černý, P. (1964). The phillipsite-wellsite-harmotome symmetry: Orthorhombic or monoclinic. Neues Jahrbuch für Mineralogie Monatshefte, 5, 129-134.
Chen, C. H., & Chung, S. L. (1985). Petrology and geochemistry of neogene continental basalts and related rocks in Taiwan. I: Basanitoids, alkali olivine basalts and tholeiites from Kuanhsi-Chutung area. Yánjiū bàogào-Guólì Táiwān dàxué. Lǐxuéyuàn dìzhìxué xì, (23), 35-62.
Chen, H. F., Lo, H. J., Song, S. R., Fang, J. N., Chen, Y. L., Li, L. J., ... & Lee, Y. T. (2002). The synthesis of phillipsite. Western Pacific Earth Sciences, 2(4), 381-392.
Chipera, S. J., & Apps, J. A. (2001). Geochemical stability of natural zeolites. Reviews in mineralogy and geochemistry, 45(1), 117-161.
Colella, C., Di Palma, G., & Aiello, R. (1985). Influence of salt addition on the hydrothermal conversion of rhyolitic pumice into zeolite. Materials chemistry and physics, 12(2), 145-155.
Correcher, V., Gomez-Ros, J. M., Dogan, T., García-Guinea, J., & Topaksu, M. (2017). Optical, spectral and thermal properties of natural pumice glass. Radiation Physics and Chemistry, 130, 69-75.
Cubillas, P., Stevens, S. M., Blake, N., Umemura, A., Chong, C. B., Terasaki, O., & Anderson, M. W. (2011). AFM and HRSEM invesitigation of zeolite A crystal growth. Part 1: in the absence of organic additives. The Journal of Physical Chemistry C, 115(25), 12567-12574.
Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and mesoporous materials, 82(1-2), 1-78.
Ding, L., Yang, H., Rahimi, P., Omotoso, O., Friesen, W., Fairbridge, C., ... & Ng, S. (2010). Solid transformation of zeolite NaA to sodalite. Microporous and mesoporous materials, 130(1-3), 303-308.
Dutta, P. K., Shieh, D. C., & Puri, M. (1988). Correlation of framework Raman bands of zeolites with structure. Zeolites, 8(4), 306-309.
Esaifan, M., Hourani, M., Khoury, H., Rahier, H., & Wastiels, J. (2017). Synthesis of hydroxysodalite zeolite by alkali-activation of basalt powder rich in calc-plagioclase. Advanced Powder Technology, 28(2), 473-480.
Feliczak-Guzik, A. (2018). Hierarchical zeolites: Synthesis and catalytic properties. Microporous and Mesoporous Materials, 259, 33-45.
Fisher, R. V., & Schmincke, H. U. (1984). Alteration of volcanic glass. In Pyroclastic Rocks (pp. 312-345). Springer, Berlin, Heidelberg.
Fukasawa, T., Horigome, A., Karisma, A. D., Maeda, N., Huang, A. N., & Fukui, K. (2018). Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by microwave hydrothermal treatment. Advanced Powder Technology, 29(3), 450-456.
Fyfe, C. A., Lee, J. J., Cranswick, L. M., & Swainson, I. (2008). Powder neutron diffraction determination of the structure of the o-xylene/zeolite ZSM-5 complex. Microporous and mesoporous materials, 112(1-3), 299-307.
Galli, E., & Loschi Ghittoni, A. G. (1972). The crystal chemistry of phillipsites. American Mineralogist: Journal of Earth and Planetary Materials, 57(7-8), 1125-1145.
Gatta, G. D., Cappelletti, P., Rotiroti, N., Slebodnick, C., & Rinaldi, R. (2009). New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. American Mineralogist, 94(1), 190-199.
GOTTARDI, G. (1978). MINERALOGY AND CRYSTAL CHEMISTRY OF ZEOLITES.
Gottardi, G., & Galli, E. (1985). Zeolites of the heulandite group. In Natural zeolites (pp. 256-305). Springer, Berlin, Heidelberg.
Granata, M. F. (2015). Pumice powder as filler of self-compacting concrete. Construction and Building Materials, 96, 581-590.
Grand, J., Awala, H., & Mintova, S. (2016). Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm, 18(5), 650-664.
Gren, W., Parker, S. C., Slater, B., & Lewis, D. W. (2010). Structure of zeolite A (LTA) surfaces and the zeolite A/water interface. The Journal of Physical Chemistry C, 114(21), 9739-9747.
Gualtieri, A. F., Caputo, D., & Colella, C. (1999). Ion exchange selectivity of phillipsite for Cs+: A structural investigation using the Rietveld method. Microporous and mesoporous materials, 32(3), 319-329.
Hay, R. L. (1966). Zeolites and zeolitic reactions in sedimentary rocks (Vol. 85). Geological Society of America.
Hay, R. L., & Sheppard, R. A. (2001). Occurrence of zeolites in sedimentary rocks: An overview. Reviews in mineralogy and geochemistry, 45(1), 217-234.
Hildebrando, E. A., Andrade, C. G. B., Rocha Junior, C. A. F. D., Angélica, R. S., Valenzuela-Diaz, F. R., & Neves, R. D. F. (2014). Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum. Materials Research, 17, 174-179.
Holden, M. A., Cubillas, P., & Anderson, M. W. (2010). In situ crystal growth of nanoporous zincophosphate observed by atomic force microscopy. Chemical Communications, 46(7), 1047-1049.
Hou, J., Yuan, J., Xu, J., Fu, Y., & Meng, C. (2013). Template-free synthesis and characterization of K-phillipsite for use in potassium extraction from seawater. Particuology, 11(6), 786-788.
Houlleberghs, M., Breynaert, E., Asselman, K., Vaneeckhaute, E., Radhakrishnan, S., Anderson, M. W., ... & Kirschhock, C. E. (2019). Evolution of the crystal growth mechanism of zeolite W (MER) with temperature. Microporous and Mesoporous Materials, 274, 379-384.
Iijima, A. (1995). Zeolites in petroleum and natural gas reservoirs in Japan: a review. In Natural Zeolites' 93; Occurrence, Properties, Use. Intern. Conf. Natural Zeolite, Brockport, New York. Jabłońska, M., Król, A., Kukulska-Zajac, E., Tarach, K., Chmielarz, L., & Góra-Marek, K. (2014). Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen. Journal of catalysis, 316, 36-46.
Jackson, M. D., Mulcahy, S. R., Chen, H., Li, Y., Li, Q., Cappelletti, P., & Wenk, H. R. (2017). Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. American Mineralogist, 102(7), 1435-1450.
Ji, S. H., Cho, J. H., Jeong, Y. H., Do Yun, J., & Yun, J. S. (2017). The synthesis of flexible zeolite nanofibers by a polymer surface thermal etching process. Applied Surface Science, 416, 178-182.
Kazemian, H., Naghdali, Z., Kashani, T. G., & Farhadi, F. (2010). Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Advanced Powder Technology, 21(3), 279-283.
Kongkachuichay, P., & Lohsoontorn, P. (2006). Phase diagram of zeolite synthesized from perlite and rice husk ash. ScienceAsia, 32, 13-16.
Krìstmannsdóttir, H., & Tomasson, J. (1978). ZEOLITE ZONES IN GEOTHERMAL AREAS Ш ICELAND.
Król, M., Morawska, J., Mozgawa, W., & Pichór, W. (2014). Low-temperature synthesis of zeolite from perlite waste—Part I: review of methods and phase compositions of resulting products. Materials Science-Poland, 32(3), 503-513.
Król, M., Morawska, J., Mozgawa, W., & Pichór, W. (2014). Low-temperature synthesis of zeolite from perlite waste—Part II: characteristics of the products. Materials Science-Poland, 32(4), 526-532.
Kunecki, P., Panek, R., Koteja, A., & Franus, W. (2018). Influence of the reaction time on the crystal structure of Na-P1 zeolite obtained from coal fly ash microspheres. Microporous and Mesoporous Materials, 266, 102-108.
Langella, A., Cappelletti, P., & Gennaro, R. D. (2001). Zeolites in closed hydrologic systems. Reviews in mineralogy and geochemistry, 45(1), 235-260.
Lee, M. G., Park, J. W., Kam, S. K., & Lee, C. H. (2018). Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method. Chemosphere, 207, 203-208.
Li, N., Li, T., Liu, H., Yue, Y., & Bao, X. (2017). A novel approach to synthesize in-situ crystallized zeolite/kaolin composites with high zeolite content. Applied Clay Science, 144, 150-156.
Liu, B. S., Tang, D. C., & Au, C. T. (2005). Fabrication of analcime zeolite fibers by hydrothermal synthesis. Microporous and mesoporous materials, 86(1-3), 106-111.
Liu, Y., Wang, G., Wang, L., Li, X., Luo, Q., & Na, P. (2019). Zeolite P synthesis based on fly ash and its removal of Cu (II) and Ni (II) ions. Chinese Journal of Chemical Engineering, 27(2), 341-348.
Lothenbach, B., Bernard, E., & Mäder, U. (2017). Zeolite formation in the presence of cement hydrates and albite. Physics and Chemistry of the Earth, Parts A/B/C, 99, 77-94.
Marantos, I., Christidis, G. E., & Ulmanu, M. (2011). Zeolite formation and deposits. Handbook of natural zeolites, 28-51.
Meier, W. M., & Baerlocher, C. (1999). Zeolite type frameworks: connectivities, configurations and conformations. In Structures and Structure Determination (pp. 141-161). Springer, Berlin, Heidelberg.
Murayama, N., Yamamoto, H., & Shibata, J. (2002). Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. International Journal of Mineral Processing, 64(1), 1-17.
Nikolov, A., Rostovsky, I., & Nugteren, H. (2017). Geopolymer materials based on natural zeolite. Case Studies in Construction Materials, 6, 198-205.
Ogasawara, T., da Fonseca, M. D., Pinto, V. B. B., Santos, S. F., Franca, S. C. A., & de Figueiredo Costa, F. P. (2010). Leucite from analcime by means of ion-exchange in potassium aqueous solutions in autoclave: thermodynamic analysis/Leucita a partir de analcima por meio de troca ionica em solucao aquosa potassica em autoclave: analise termodinamica. Tecnologia em Metalurgia e Materiais, 6(4), 220-225.
Ostrooumov, M. (2017). Raman and Infrared Reflection Spectroscopic Study of Mineralogical Composition of Iron-Manganese Nodules (Pacific and Indian Oceans). International Journal of Experimental Spectroscopic Techniques, 2(1).
Ottana, R., Saija, L. M., Burriesci, N., & Giordano, N. (1982). Hydrothermal synthesis of zeolites from pumice in alkaline and saline environment. Zeolites, 2(4), 295-298.
Pachta, V., Papadopoulos, F., & Stefanidou, M. (2019). Development and testing of grouts based on perlite by-products and lime. Construction and Building Materials, 207, 338-344.
Pansini, M., Colella, C., Caputo, D., De'Gennaro, M., & Langella, A. (1996). Evaluation of phillipsite as cation exchanger in lead removal from water. Microporous Materials, 5(6), 357-364.
Park, M., Kim, J. S., Choi, C. L., Kim, J. E., Heo, N. H., Komarneni, S., & Choi, J. (2005). Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3. Journal of controlled release, 106(1-2), 44-50.
Passaglia, E., & Sheppard, R. A. (2001). The crystal chemistry of zeolites. Reviews in mineralogy and geochemistry, 45(1), 69-116.
Poly, S. S., Jamil, M. A., Touchy, A. S., Yasumura, S., Siddiki, S. H., Toyao, T., ... & Shimizu, K. I. (2019). Acetalization of glycerol with ketones and aldehydes catalyzed by high silica Hβ zeolite. Molecular Catalysis, 479, 110608.
Querol, X., Moreno, N., Umaña, J. T., Alastuey, A., Hernández, E., Lopez-Soler, A., & Plana, F. (2002). Synthesis of zeolites from coal fly ash: an overview. International Journal of coal geology, 50(1-4), 413-423.
Rinaldi, R. O. M. A. N. O., Pluth, J. J., & Smith, J. V. (1974). Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 30(10), 2426-2433.
Rodrigues, M., Souza, A. G., & Santos, I. M. G. (2016). Brazilian kaolin wastes: synthesis of zeolite p at low-temperature. Chemical Science International Journal, 1-11.
Rujiwatra, A. (2004). A selective preparation of phillipsite and sodalite from perlite. Materials Letters, 58(14), 2012-2015.
Ryu, T. G., Ryu, J. C., Choi, C. H., Kim, C. G., Yoo, S. J., Yang, H. S., & Kim, Y. H. (2006). Preparation of Na-P1 zeolite with high cation exchange capacity from coal fly ash. Journal of Industrial and Engineering Chemistry, 12(3), 401-407.
Seki, Y., & Oki, Y. (1969). Wairakite-analcime solid solutions from low-grade metamorphic rocks of the Tanzawa Mountains, Central Japan. Mineralogical Journal, 6(1-2), 36-45.
Sharma, P., Song, J. S., Han, M. H., & Cho, C. H. (2016). GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties. Scientific reports, 6, 22734.
Sheppard, R. A., & Gude, A. J. (1969). Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California (No. 634). US Govt. Print. Off.,.
Sheppard, R. A. (1989). Zeolitic alteration of lacustrine tuffs, western Snake River Plain, Idaho, USA. In Studies in Surface Science and Catalysis (Vol. 49, pp. 501-510). Elsevier.
Scandella, L., Kruse, N., & Prins, R. (1993). Imaging of zeolite surface structures by atomic force microscopy. Surface science, 281(3), L331-L334.
Snellings, R., Mertens, G., Cizer, Ö., & Elsen, J. (2010). Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction. Cement and Concrete Research, 40(12), 1704-1713.
Su, S., Ma, H., & Chuan, X. (2016). Hydrothermal synthesis of zeolite A from K-feldspar and its crystallization mechanism. Advanced Powder Technology, 27(1), 139-144.
Surdam, R. C., & Parker, R. D. (1972). Authigenic aluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming. Geological Society of America Bulletin, 83(3), 689-700.
Sudo, T., & Matsuoka, M. (1959). Artificial crystallization of volcanic glass to sodalite and a zeolite structure. Geochimica et Cosmochimica Acta, 17(1-2), 1-5.
Sugiyama, S., Yamamoto, S., Matsuoka, O., Nozoye, H., Yu, J., Zhu, G., ... & Terasaki, O. (1999). AFM observation of double 4-rings on zeolite LTA crystals surface. Microporous and mesoporous materials, 28(1), 1-7.
Tangkawanit, S., Rangsriwatananon, K., & Dyer, A. (2005). Ion exchange of Cu2+, Ni2+, Pb2+ and Zn2+ in analcime (ANA) synthesized from Thai perlite. Microporous and mesoporous materials, 79(1-3), 171-175.
Utada, M. (1970). Occurrence and distribution of authigenic zeolites in the Neogene pyroclastic rocks in Japan. Sci. Paper Coll. Gen. Educ. Univ. Tokyo, 20, 191-262.
Valencia-Ortega, M., Fuentes-Azcatl, R., & Dominguez, H. (2019). Carbon dioxide adsorption on a modified zeolite with sodium dodecyl sulfate surfactants: A molecular dynamics study. Journal of Molecular Graphics and Modelling, 92, 243-248.
Voltolini, M., Artioli, G., & Moret, M. (2003). Molecular resolution images of the surfaces of natural zeolites by atomic force microscopy. Microporous and mesoporous materials, 61(1-3), 79-84.
Wajima, T. (2016). Synthesis of zeolitic material from green tuff stone cake and its adsorption properties of silver (I) from aqueous solution. Microporous and Mesoporous Materials, 233, 154-162.
Whitham, A. G., & Sparks, R. S. J. (1986). Pumice. Bulletin of Volcanology, 48(4), 209-223.
Wdowin, M., Franus, M., Panek, R., Badura, L., & Franus, W. (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 16(6), 1217-1223.
Yamamoto, S., Sugiyama, S., Matsuoka, O., Kohmura, K., Honda, T., Banno, Y., & Nozoye, H. (1996). Dissolution of zeolite in acidic and alkaline aqueous solutions as revealed by AFM imaging. The Journal of Physical Chemistry, 100(47), 18474-18482.
Yao, G., Lei, J., Zhang, X., Sun, Z., Zheng, S., & Komarneni, S. (2018). Mechanism of zeolite X crystallization from diatomite. Materials Research Bulletin, 107, 132-138.
Yu, Y., Xiong, G., Li, C., & Xiao, F. S. (2001). Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Microporous and mesoporous materials, 46(1), 23-34.
Yuan, P., He, H. P., Wu, D. Q., Wang, D. Q., & Chen, L. J. (2004). Characterization of diatomaceous silica by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(12), 2941-2945.
Zhdanov, S. P., Khvoshchev, S. S., & Feoktistova, N. N. (1990). Synthetic zeolites. CRC Press.
Zhou, Z., Jin, G., Liu, H., Wu, J., & Mei, J. (2014). Crystallization mechanism of zeolite A from coal kaolin using a two-step method. Applied clay science, 97, 110-114.