簡易檢索 / 詳目顯示

研究生: 高偉傑
Kao, Wei-Chieh
論文名稱: 電容式耦合電漿腔體內氣體分子均勻性的數值模擬分析
Numerical Simulation of Gas Uniformity in Capacitively Coupled Plasma Chamber
指導教授: 楊世銘
Yang, Shih-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 75
中文關鍵詞: 電容式耦合電漿表面改質直接模擬蒙地卡羅方法電漿均勻性
外文關鍵詞: Capacitively Coupled Plasma, Surface Modification, PIC-DSMC, pdFOAM, Plasma Uniformity
相關次數: 點閱:17下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著目前半導體製程中基板尺寸逐漸加大,對於大面積電漿製程的均勻性的議題將越來越重要,電漿模擬約可分為三大項: (1)氣流場與溫度場的模擬 (2)電場與磁場的模擬 (3)化學反應的模擬。電漿是由帶電荷粒子所組成的多粒子系統,彼此之間會有庫倫力的存在,故交互作用的影響是連續且長程的,電漿製程同時存在化學反應、熱流場與電磁場三者並互相影響,這些特性大幅增加電漿系統分析的困難。本文分析電容式耦合電漿電漿源設備蝕刻均勻性模擬,以克努森數 (Knudsen number)為評估依據選擇適當的氣體分子均勻性數值模擬方式,採用氣流場與電場的混合模擬方法,結合粒子模型的粒子網格法 (PIC)與直接模擬蒙地卡羅 (DSMC)方法混合方法 (PIC-DSMC)方法,並透過數值模擬軟體pdFOAM進行模擬分析氣體分子均勻性,粒子碰撞過程中亦考慮到DSMC和PIC方法的網格計算尺度的差異,並避免過度稀疏或過度密集區域導致的計算失衡。並將電子密度數值模擬分布結果與FR4表面改質後的水滴角量測結果進行比對,於均勻性分布趨勢高度一致,證實pdFOAM可作為介電質材料表面改質之可靠預測工具,並使用田口方法得到電子密度均勻性的控制因子影響程度排序為:射頻功率 > 腔體壓力 > 進氣流量的結論,最後本研究得到的最佳參數條件與最初的參數條件相較,模擬電子密度均勻性指標變異係數由18.55 %再降至11.15 %。

    With the fact that the substrate size is gradually increasing in the current semiconductor process, the uniformity for large area plasma process is therefore critical. And the plasma simulation for uniformity is divided into three main categories: (1) the simulation of air flow field and temperature field (2) the simulation of electrical field and magnetic field (3) the simulation of chemical reactions. Plasma is composed of charged particles of the multi-particle system, and there exists Coulomb force between each other. Thus, the interaction of the impact is continuous and long range. Also, chemical reaction, thermal gradients and electromagnetic fields are tightly coupled in the plasma process. This interaction greatly affects the difficulties of plasma system analysis.
    This study analyzes the simulation of etching uniformity of Capacitively Coupled Plasma-Reactive Ion Etching (CCP-RIE) system. By Knudsen number, the appropriate numerical simulation of gas molecular uniformity is evaluated. With the adoption of the hybrid simulation method of gas flow field and electrical field, and the combination the hybrid method of particle-in-cell/direct-simulation-Monte-Carlo (PIC-DSMC) method, the gas molecular uniformity is analyzed by the numerical simulation software, pdFOAM. In addition, the difference in the mesh computational scales between the DSMC and PIC methods is considered in the particle collision process. In this way, the computational imbalance caused by the overly sparse or overly dense regions will be avoided.
    In this study, the simulated electron-density distributions are validated by comparing them with water-contact-angle measurements taken on FR-4 substrates after surface modification. The uniformity distribution trend is highly consistent. This indicates that pdFOAM is a reliable predictive tool for dielectric-surface modification. Last but not least, Taguchi analysis is applied to conclude the sensitivity ranks of control factors affecting electron-density uniformity. RF power is higher than the chamber pressure, which in turn is higher than the inlet flow rate. Under the identified optimum settings, the coefficient of variation of the simulated electron-density uniformity can be decreased from 18.55 % to 11.15 %, an improvement of approximately 7.4%.

    摘要 i Abstract ii 誌謝 vi 目錄 vii 表目錄 ix 圖目錄 x 第1章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.2.1 電漿源種類 2 1.2.2 乾式蝕刻技術 5 1.3 蝕刻製程均勻性與克努森數(Knudsen number) 8 1.3.1 蝕刻均勻性與製程參數影響 8 1.3.2 克努森數(Knudsen number) 9 1.4 文獻回顧 10 1.5 研究目的 12 第2章 粒子網格法混合直接模擬蒙地卡羅方法(PIC-DSMC) 14 2.1 波茲曼統御方程式 14 2.2 粒子網格法 (Particle-in-cell method) 16 2.3 實現軟體pdFOAM 18 2.4 初始化與粒子追蹤(Particle tracking) 20 2.5 二元碰撞(Binary collision) 23 2.5.1 粒子碰撞 23 2.5.2 碰撞機率的計算 26 2.5.3 碰撞對的選擇-TCC暫態聚合網格法 (Transient Conglomerated Cell) 27 2.5.4 碰撞對的選擇-NTC無時間計數法 (No-Time-Counter Method) 28 2.5.5 非彈性碰撞 30 2.5.6 彈性碰撞 30 2.6 取樣 31 2.7 結論 32 第3章 實驗設計與研究方法 34 3.1 物理模型與網格處理 34 3.2 初始條件與邊界條件設定 36 3.3 腔內壓力對其流場分布均勻性之影響 37 3.4 實驗設備與模擬均勻性比較 41 3.5 腔內製程氣體流量對其流場分布均勻性之影響 47 3.6 腔內射頻功率對其流場分布均勻性之影響 50 3.7 最佳參數的蝕刻均勻性驗證 53 第4章 結論與未來建議 56 參考文獻 59

    [1]M. D. Kilgore, H. M. Wu, and D. B. Graves, "Neutral Transport in High Plasma‐Density Reactors," J. Vac. Sci. Technol. B, Article; vol. 12, no. 1, pp. 494-506, 1994.
    [2]M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Edition (Principles of Plasma Discharges and Materials Processing, 2nd Edition). Oxford: Blackwell Science Publ, 2005.
    [3]H. Jansen, H. Gardeniers, M. deBoer, M. Elwenspoek, and J. Fluitman, "A Survey on The Reactive Ion Etching of Silicon in Microtechnology," J. Micromech. Microeng, vol. 6, no. 1, pp. 14-28, 1996.
    [4]D. Lishan, "Plasma Etching: Comparing PE, RIE and ICP-RIE," Plasma-Therm, White Paper, 2020.
    [5]C. White, M. K. Borg, T. J. Scanlon, S. M. Longshaw, B. John, D. R. Emerson, and J. M. Reese, "DsmcFoam Plus : An OpenFOAM Based Direct Simulation Monte Carlo Solver," Comput. Phys. Commun, vol. 224, pp. 22-43, 2018.
    [6]G. A. Bird, "Monte-Carlo Simulation in an Engineering Context," Progress in Astronautics and Aeronautics, vol. 74, no. 1, pp. 239-255, 1981.
    [7]G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, 1994.
    [8]M. Surendra, D. B. Graves, and L. S. Plano, "Self‐Consistent DC Glow‐Discharge Simulations Applied to Diamond Film Deposition Reactors," Journal of Applied Physics, vol. 71, no. 10, pp. 5189-5198, 1992.
    [9]D. J. Economou and T. J. Bartel, "Direct Simulation Monte Carlo (DSMC) of Rarefied Gas Flow during Etching of Large Diameter (300-mm) Wafers," IEEE Trans. Plasma Sci,vol. 24, no. 1, pp. 131-132, 1996.
    [10]M. H. Khater, L. J. Overzet, and B. E. Cherrington, "Effects of Gas Distribution on Polysilicon Etch Rate Uniformity for a Low Pressure, High Density Plasma," J. Vac. Sci. Technol. B, vol. 16, no. 2, pp. 490-495, 1998.
    [11]吳昌祐, "高頻低壓大面積電容式耦合電漿之駐波效應數值模擬研究分析." 國立清華大學碩士論文, 2021.
    [12]H. I. G. Jelid, C. White, and K. Kontis, "Development of a Novel DC Micro-Discharge Code on DsmcFoam Plus for Plasma Effect in DSMC Flow Profile Simulations and its Application to a Micro-Plasma System," Adv. Space Res, vol. 70, no. 11, pp. 3418-3435, 2022.
    [13]C. J. Capon, M. Brown, C. White, T. Scanlon, and R. R. Boyce, "PdFOAM: A PIC-DSMC Code for Near-Earth Plasma-Body Interactions," Computers & Fluids, vol. 149, pp. 160-171, 2017.
    [14]G. A. Bird, Molecular Gas Dynamics, Clarendon Press, 1976.
    [15]W. Wagner, "A Convergence Proof for Bird's Direct Simulation Monte Carlo Method for the Boltzmann Equation," J. Stat. Phys, vol. 66, no. 3-4, pp. 1011-1044, 1992.
    [16]"The OpenFOAM Foundation." http://www.openfoam.org/ (Accessed: Feb. 13, 2025.)
    [17]J. Boerner and I. Boyd, "Numerical Simulation of Probe Measurements in a Non-equilibrium Plasma, Using a Detailed Model Electron Fluid," in 45th AIAA Aerospace Sciences Meeting and Exhibit, 2012.
    [18]R. W. Hockney and J. W. Eastwood, "Computer Simulation Using Particles," Abingdon, U.K.: Taylor & Francis Group, 1988.
    [19]T. Staszak, "A Statistical Boundary for 3D Rarefied Flows Through Meshes: Implementation to a New Version of DsmcFoam Plus and Wind Tunnel Validation," Meccanica, vol. 59, pp. 4-5, 2024.
    [20]I. Borges Sebastião, "Numerical Simulation of MEMS-Based Cold Gas Micronozzle Flows," M.S. thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil, 2011.
    [21]C. Borgnakke and P. S. Larsen, "Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture," J. Comput. Phys, vol. 18, no. 4, pp. 405-420, 1975.
    [22]C. Küllig, K. Dittmann, T. Wegner, I. Sheykin, K. Matyash, D. Loffhagen, R. Schneider, and J. Meichsner, "Dynamics and Electronegativity of Oxygen RF Plasmas," Contrib. Plasma Phys, vol. 52, no. 10, pp. 836-846, 2012.
    [23]"O₂ and Oxygen on IST‑Lisbon Database. " www.lxcat.net/(Accessed: Jun. 3, 2025.)
    [24]A. V. Phelps, "Tabulations of Collision Cross Sections and Calculated Transport and Reaction Coefficients for Electron Collisions with O₂," JILA Information Center, vol. 28, pp. 1-12, 1985.
    [25]M. Tashiro, K. Morokuma, and J. Tennyson, "R -Matrix Calculation of Electron Collisions with Electronically Excited O₂ Molecules," Physical Review A, vol. 73, pp. 52707, 2006.
    [26]R. R. Laher and F. R. Gilmore, "Updated Excitation and Ionization Cross Sections for Electron Impact on Atomic Oxygen," Journal of Physical and Chemical Reference Data, vol. 19, no. 1, pp. 277-305, 1990.
    [27]L. Vejby-Christensen, D. Kella, D. Mathur, H. B. Pedersen, H. T. Schmidt, and L. H. Andersen, "Electron-Impact Detachment from Negative Ions," Physical Review A, vol. 53, no. 4, pp. 2371-2378, 1996.
    [28]J. T. Gudmundsson and M. A. Lieberman, "Recombination Rate Coefficients in Oxygen Discharges," Tech. Rep. RH-17-2004, Science Institute, University of Iceland, 2004.
    [29]P. Annemieke, H. Fredrik, D. T. Richard, L. Mats, C. C. Philip, and J. v. d. Z. Wim, "Vibrational Dependence in the Dissociative Recombination of O₂+," Journal of Physics: Conference Series, vol. 4, no. 1, pp. 182, 2005.
    [30]G. Gousset, C. M. Ferreira, M. Pinheiro, P. A. Sa, M. Touzeau, M. Vialle, et al., "Electron and Heavy-Particle Kinetics in the Low Pressure Oxygen Positive Column," Journal of Physics D: Applied Physics, vol. 24, no. 3, pp. 290, 1991.
    [31]P. D. Burrow, "Dissociative Attachment from the O₂ ( ) State," the Journal of Chemical Physics, vol. 59, no. 9, pp. 4922-4931, 1973.
    [32]J. T. Gudmundsson and E. G. Thorsteinsson, "Oxygen Discharges Diluted with Argon: Dissociation Processes," Plasma Sources Science and Technology, vol. 16, no. 2, pp. 399, 2007.
    [33]T. C. Dias, C. Fromentin, L. L. Alves, A. Tejero-del-Caz, T. Silva, and V. Guerra, "A Reaction Mechanism for Oxygen Plasmas," Plasma Sources Science and Technology, vol. 32, no. 8, pp. 084003, 2023.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE