簡易檢索 / 詳目顯示

研究生: 林佑璁
Lin, Yu-Tsung
論文名稱: 綴飾和吸附而豐富化的石墨烯相關系統基本性質
Decoration- and Adsorption-Enriched Essential Properties of Graphene-Related Systems
指導教授: 林明發
Lin, Ming-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 118
中文關鍵詞: 石墨烯石墨烯奈米帶邊界吸附第一原理計算
外文關鍵詞: graphene, graphene nanoribbon, edge passivation, first-priciple calculation
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們以第一原理理論研究了吸附原子在石墨稀表面、石墨稀奈米帶的表面及邊界之幾何結構和電子性質。在不同的金屬或非金屬原子吸附下,改變其吸附位置和濃度探討石墨稀系統的電子性質,如: 產生的能隙大小、載子濃度、電荷密度分佈、吸附能、能帶和態密度上的變化等等,建構出吸附原子與石墨系統之間的各種化學鍵結的圖像。首先我們以 Al 原子吸附於石墨稀表面為主,並比較和鹼金屬及鹵素元素吸附結果的差異。Al 原子能產生與鹼金屬原子相當的自由載子濃度,和鹼金屬一樣,能帶的 Dirac cone 結構幾乎不受影響且呈現紅位移。由能帶和態密度顯示,由Al與鹼金屬原子主導的能帶提供電子轉移到石墨稀上成為自由載子。而鹵素原子則是產生電洞載子,F 呈現與碳原子強烈的共價鍵結,Br 與 Cl 是微弱的鍵結力。在奈米帶系統中,鹼金屬元素置於表面的不同位置並改變濃度,由鹼金屬原子 s軌域與碳的2pz軌域的混成產生的能帶落到費米能以下些許,使奈米帶具金屬性。其外層s軌域價電子轉移到奈米帶上的自由載子與濃度成正比,但與吸附位置無關,對奈米帶的π鍵結幾乎不影響,這也與能帶有一致對應。在手椅狀奈米帶系統中,吸附於邊界上依照系統最低穩定能量會有平面和非平面的結構,這些結構決定於吸附原子的半徑和價電子數,顯示出它們不同的鍵結特性,特別的是氮原子展現出五角形-七邊形的邊界結構並有非常強的 N-C共價鍵結。吸附原子會影響隨寬度而變化的能隙,並改變原有奈米帶的能隙變化趨勢。

    The geometric, electronic and magnetic properties are investigated by the first-principles calculations for monolayer graphene and graphene nanoribbon. The critical chemical bondings are identified from the atom-dominated energy bands, the spatial charge distribution, and the orbital-projected density of states. The essential properties are very sensitive to the kind, position, and concentration of adatoms. The single-layer structure might be buckled, distorted or non-hexagonal after the edge passivation/surface adsorption. There exist semiconductors and metals, being determined by the single- or multi-orbital hybridizations in carbon-adatom bonds, the finite-size confinement, and the edge structure. Specially, each alkali adatom can create one conduction electron. This has been examined in detail using the accurate calculations and analyses. The spin arrangements cover the anti-ferromagnetic, ferromagnetic, and non-magnetic configurations.

    Chapter 1. Introduction........1 References.......10 Chapter 2. Feature-rich electronic properties of aluminum-doped graphenes 2.1 Introduction........19 2.2 Computational methods..........22 2.3 Results and discussion.........22 2.4 Conclusion..........38 References.........41 Chapter 3. Alkali-created rich properties in graphene nanoribbons: Chemical bondings 3.1 Introduction.........48 3.2 Computational methods.........51 3.3 Results and discussion.........52 3.4 Conclusion.........69 References.........72 Chapter 4. Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons 4.1 Introduction.........82 4.2 Computational methods.........85 4.3 Results and discussion.........86 4.4 Conclusion.........102 References.........104 Chapter 5. Summary.........114 Publications.........118

    Chapter 1
    [1] K. S. Novoselov, A. K. Geim, et al., "Two-dimensional gas of massless Dirac fermions in graphene". Nature 438, 7065(197--200)(2005).
    [2] Y. I. Zhang, L. Y. Zhang, et al., "Review of chemical vapor deposition of graphene and related applications'. Accounts of Chemical Research 46, 10(2329--2339)(2013).
    [3] K. S. Kim, Y. Zhao, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes'. Nature 457, 7230(706--710)(2009).
    [4] H. A. Becerril, J. Mao, et al., "Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors'. ACS Nano 2, 3(463-470)(2008).
    [5] J. Lu, J. X. Yang, et al., "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids'. ACS Nano 3, 8(2367--2375)(2009).
    [6] A. A. Balandin, S. Ghosh, et al., "Superior thermal conductivity of single-layer graphene'. Nano Letters 8, 3(902--907)(2008).
    [7] A. K. Geim and K. S. Novoselov, "The rise of graphene'. Nature Materials 6, 3(183-191)(2007).
    [8] C. Berger, Z. Song, et al., "Electronic confinement and coherence in patterned epitaxial graphene'. Science 312, 5777(1191--1196)(2006).
    [9] H. Liu, Y. Liu, et al., "Chemical doping of graphene'. Journal of Materials Chemistry 21, 10(3335--3345)(2011).
    [10] D. Wei, Y. Liu, et al., "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties'. Nano Letters 9, 5(1752--1758)(2009).
    [11] M. Papagno, S. Rusponi, et al., "Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice'. Acs Nano 6, (199--204)(2011).
    [12] P. Sutter, M. Hybertsen, et al., "Electronic structure of few-layer epitaxial graphene on Ru (0001)'. Nano Letters 9, 7(2654--2660)(2009).
    [13] P. Lauffer, K. Emtsev, et al., "Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy'. Physical Review B 77, 155426(2008).
    [14] X. Zhong, R. Pandey, et al., "Stacking dependent electronic structure and transport in bilayer graphene nanoribbons'. Carbon 50, 3(784--790)(2012).
    [15] N. T. T. Tran, S. Y. Lin, et al., "Configuration-induced rich electronic properties of bilayer graphene'. The Journal of Physical Chemistry C 119, 19(10623--10630)(2015).
    [16] Y. H. Lai, J. H. Ho, et al., "Magnetoelectronic properties of bilayer Bernal graphene'. Physical Review B 77, 085426(2008).
    [17] C. Y. Lin, J. Y. Wu, et al., "Magneto-electronic properties of multilayer graphenes'. Physical Chemistry Chemical Physics 17, 39(26008--26035)(2015).
    [18] V. M. Pereira, A. C. Neto, et al., "Strain engineering of graphene's electronic structure'. Physical Review Letters 103, 046801(2009).
    [19] J. H. Wong, B. R. Wu, et al., "Strain effect on the electronic properties of single layer and bilayer graphene'. The Journal of Physical Chemistry C 116, 14(8271--8277)(2012).
    [20] Z. Ao, F. Peeters, et al., "High-capacity hydrogen storage in Al-adsorbed graphene'. Physical Review B 81, 205406(2010).
    [21] H. Gao, L. Wang, et al., "Band gap tuning of hydrogenated graphene: H coverage and configuration dependence'. The Journal of Physical Chemistry C 115, 8(3236-3242)(2011).
    [22] D. C. Elias, R. R. Nair, et al., "Control of graphene's properties by reversible hydrogenation: evidence for graphane'. Science 323, 5914(610--613)(2009).
    [23] M. A. Velasco-Soto, S. A. Perez-Garcia, et al., "Selective band gap manipulation of graphene oxide by its reduction with mild reagents'. Carbon 93, (967--973)(2015).
    [24] T. Tsuchiya, K. Terabe, et al., "In Situ and Non-Volatile Bandgap Tuning of Multilayer Graphene Oxide in an All-Solid-State Electric Double-Layer Transistor'. Advanced Materials 26, 7(1087-1091)(2014).
    [25] W. J. Yu, L. Liao, et al., "Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping'. Nano letters 11, 11(4759--4763)(2011).
    [26] P. V. C. Medeiros, A. J. S. Mascarenhas, et al., "A DFT study of halogen atoms adsorbed on graphene layers'. Nanotechnology 21, 485701(2010).
    [27] J. T. Robinson, J. S. Burgess, et al., "Properties of fluorinated graphene films'. Nano Letters 10, 8(3001--3005)(2010).
    [28] B. R. Wu, C. K. Yang, et al., "Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms'. AIP Advances 2, 012173(2012).
    [29] M. Papagno, S. Rusponi, et al., "Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice'. Acs Nano 6, 1(199--204)(2011).
    [30] E. J. G. Santos, A. Ayuela, et al., "First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties'. New Journal of Physic 12, 053012(2010).
    [31] K. Nakada, A. Ishii, et al., "Migration of adatom adsorption on graphene using DFT calculation'. Solid State Communications 151, 1(13--16)(2011).
    [32] X. J. Liu, C. Z. Wang, et al., "Metals on graphene: correlation between adatom adsorption behavior and growth morphology'. Physical Chemistry Chemical Physics 14, 25(9157--9166)(2012).
    [33] O. Akturk, M. Tomak, et al., "Bismuth doping of graphene'. Applied Physics Letters 96, 081914(2010).
    [34] C. Attaccalite and A. Rubio, "Fermi velocity renormalization in doped graphene'. Physica Status Solidi (b) 246, (11-12)(2009).
    [35] F. Schwierz, "Graphene transistors'. Nature Nanotechnology 5, 7(487--496)(2010).
    [36] G. Wang, X. Shen,et al., "Graphene nanosheets for enhanced lithium storage in lithium ion batteries'. Carbon 47, 8(2049--2053)(2009).
    [37] M. Fujita, K. Wakabayashi, et al., "Peculiar localized state at zigzag graphite edge'. Journal of the Physical Society of Japan 65, 7(1920--1923)(1996).
    [38] L. Talirz, H. Sode, et al., "Termini of bottom-up fabricated graphene nanoribbons". Journal of the American Chemical Society 135, 6(2060--2063)(2013).
    [39] Y. C. Chen, D. G. De Oteyza, et al., "Tuning the band gap of graphene nanoribbons synthesized from molecular precursors'. ACS Nano 7, 7(6123--6128)(2013).
    [40] J. L. Wang, L. Ma, et al., "Transition-Metal-Catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature". Angewandte Chemie International Edition 50, 35(8041--8045)(2011).
    [41] M. Y. Han, B. ozyilmaz, et al., "Energy band-gap engineering of graphene nanoribbons". Physical Review Letters 98, 206805(2007).
    [42] W. J. Yu, and X. F. Duan, "Tunable transport gap in narrow bilayer graphene nanoribbons'. Scientific Reports 3, 1248(2013).
    [43] L. Jiao, L. Zhang, et al., "Narrow graphene nanoribbons from carbon nanotubes". Nature 458, 7240(877--880)(2009).
    [44] D. V. Kosynkin, A. L. Higginbotham, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature 458, 7240(872--876)(2009).
    [45] A. L. Elias, A. R. Botello-Mendez, et al., "Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels". Nano Letters 10, 2(366--372)(2009).
    [46] V. Barone, O. Hod, et al., "Electronic structure and stability of semiconducting graphene nanoribbons". Nano Letters 6, 12(2748--2754)(2006).
    [47] J. Cai, P. Ruffieux, et al., "Atomically precise bottom-up fabrication of graphene nanoribbons". Nature 466, 7305(470--473)(2010).
    [48] M. Ezawa, "Peculiar width dependence of the electronic properties of carbon nanoribbons'. Physical Review B 73, 045432(2006).
    [49] Y. W. Son, M. L. Cohen, et al., "Energy gaps in graphene nanoribbons". Physical Review Letters 97, 216803(2006).
    [50] C. Tao, L. Jiao, et al., "Spatially resolving edge states of chiral graphene nanoribbons". Nature Physics 7, 8(616--620)(2011).
    [51] G. Z. Magda, X. Jin, et al., "Room--temperature magnetic order on zigzag edges of narrow graphene nanoribbons". Nature 514, (608-611)(2014).
    [52] Y. Y. Li, M. X. Chen, "Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons". Nature Communications 5, 4311(2014).
    [53] H. Tsuchiya, H. Hosokawa, et al., "Theoretical Evaluation of Ballistic Electron Transport in Field-Effect Transistors with Semiconducting Graphene Channels". Japanese Journal of Applied Physics 51, 055103(2012).
    [54] N. Kharche, Y. Zhou, et al., "Effect of layer stacking on the electronic structure of graphene nanoribbons". ACS Nano 5, 8(6096--6101)(2011).
    [55] B. Sahu, H. K. Min, et al., "Energy gaps, magnetism, and electric--field effects in bilayer graphene nanoribbons". Physical Review B 78, 045404(2008).
    [56] S. L. Chang, B. R. Wu, et al., "Configuration--dependent geometric and electronic properties of bilayer graphene nanoribbons". Carbon 77, (1031--1039)(2014).
    [57] X. Peng, F. Tang, et al., ``Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study". Journal of Physics: Condensed Matter 24, 075501(2012).
    [58] C. P. Chang, Y. C. Huang, et al., "Electronic and optical properties of a nanographite ribbon in an electric field". Carbon 44, 3(508--515)(2006).
    [59] E. J. Kan, Z. Li, et al., "Will zigzag graphene nanoribbon turn to half metal under electric field ?". Applied Physics Letters 91, 243116(2007).
    [60] Y. C. Huang, C. P. Chang, et al., "Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons". Nanotechnology 18, 495401(2007).
    [61] J. Y. Wu, Y. H. Chiu, et al., "Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons". Journal of Nanoscience and Nanotechnology 9, 5(3193--3200)(2009).
    [62] X. Zhang, O. V. Yazyev, et al., "Experimentally engineering the edge termination of graphene nanoribbons". ACS Nano 7, 1(198-202)(2012).
    [63] Y. Z. Tan, B. Yang, et al., "Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons". Nature Communications 4, 2646(2013).
    [64] R. Nadiv, M. Shtein, et al., "Graphene nanoribbon-polymer composites: The critical role of edge functionalization". Carbon 99, (444-450)(2016).
    [65] M. Jaiswal, X. L. Yi, et al., "Controlled Hydrogenation of Graphene Sheets and Nanoribbons". ACS Nano 5, 2(888-896)(2011).
    [66] S. M. Paek, E. Yoo, et al., "Enhanced cyclic performance and lithium storage capacity of SnO2 graphene nanoporous electrodes with three-dimensionally delaminated flexible structure'. Nano Letters 9, 1(72--75)(2008).
    [67] J.L. Johnson, A. Behnam, et al., "Hydrogen sensing using Pd--functionalized multi--layer graphene nanoribbon networks". Advanced Materials 22, 43(4877-4880)(2010).
    [68] M. Vanin, J. Gath, et al., "First-principles calculations of graphene nanoribbons in gaseous environments: Structural and electronic properties". Physical Review B 82, 195411(2010).
    [69] F. Cervantes-Sodi, G. Csanyi, et al., "Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties". Physical Review B 77, 165427(2008).
    [70] B. C. Wood, S. Y. Bhide, et al., ``Methane and carbon dioxide adsorption on edge-functionalized graphene: a comparative DFT study". The Journal of chemical physics 137, 054702(2012).
    [71] C. G. da Rocha, P. A. Clayborne, et al., "Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters". Physical Chemistry Chemical Physics 16, 8(3558-3565)(2014).
    [72] D. Krepel and O. Hod, "Lithium-mediated benzene adsorption on graphene and graphene nanoribbons". The Journal of Physical Chemistry C 117, 38(19477-19488)(2013).
    [73] D. Krepel and O. Hod, "Lithium adsorption on armchair graphene nanoribbons". Surface Science 605, 17(1633-1642)(2011).
    [74] Y. Mao, W. Hao, et al., "Edge-adsorption of potassium adatoms on graphene nanoribbon: A first principle study". Applied Surface Science 280, 1(698--704)(2013).
    [75] Y. Pan and Z. Yang, "Exploration of magnetism in armchair graphene nanoribbons with radical groups". Chemical Physics Letters 518, (104--108)(2011).
    [76] A. J. Simbeck, D. Gu, et al., "Electronic structure of oxygen-functionalized armchair graphene nanoribbons". Physical Review B 88, 035413(2013).
    [77] Y. Wang, C. Cao, et al., "Metal-terminated graphene nanoribbons". Physical Review B 82, 205429(2010).
    [78] P. Wagner, C. P. Ewels, et al., "Band gap engineering via edge--functionalization of graphene nanoribbons". The Journal of Physical Chemistry C 117, 50(26790--26796)(2013).
    [79] J. Ryou, J. Park, et al., "Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures". Journal of physics. Condensed Matter: an Institute of Physics Journal 29, 245301(2017).

    Chapter 2
    [1] K. S. Novoselov, A. K. Geim, et al., "Two-dimensional gas of massless Dirac fermions in graphene". Nature 438, 7065(197-200) (2005).
    [2] F. Schedin, A. K. Geim, et al., "Detection of individual gas molecules adsorbed on graphene". Nature Materials 6, 9(652-655)(2007).
    [3] A. K. Geim, "Graphene: status and prospects". Science 324, 5934(1530-1534)(2009).
    [4] C. Lee, X. Wei, et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene". Science 321, 5887(385-388)(2008).
    [5] C. Berger, Z. Song, et al., "Electronic confinement and coherence in patterned epitaxial graphene". Science 312, 5777(1191-1196)(2006).
    [6] A. A. Balandin, S. Ghosh, et al., "Superior thermal conductivity of single-layer graphene". Nano Letters 8, 3(902-907)(2008).
    [7] H. Liu, Y. Liu, et al., "Chemical doping of graphene". Journal of Materials Chemistry 21, 10(3335-3345)(2011).
    [8] P. Sutter, M. Hybertsen, et al., "Electronic structure of few-layer epitaxial graphene on Ru (0001)". Nano Letters 9, 7(2654-2660)(2009).
    [9] X. Zhong, R. Pandey, et al., "Stacking dependent electronic structure and transport in bilayer graphene nanoribbons". Carbon 50, 3(784-790)(2012).
    [10] Y. H. Lai, J. H. Ho, et al., "Magnetoelectronic properties of bilayer Bernal graphene". Physical Review B 77, 085426(2008).
    [11] V. M. Pereira, A. C. Neto, et al., "Strain engineering of graphene's electronic structure". Physical Review Letters 103, 046801(2009).
    [12] M. C. Lin, M. Gong, et al., "An ultrafast rechargeable aluminium-ion battery". Nature 520, 7547(324-328)(2015).
    [13] J. V. Rani, V. Kanakaiah, et al., "Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum{ion battery". Journal of The Electrochemical Society 160, 10(1781-1784)(2013).
    [14] Y. M. Lin, C. Dimitrakopoulos, et al., "100-GHz transistors from wafer-scale epitaxial graphene". Science 327, (662-662)(2010).
    [15] F. Schwierz, "Graphene transistors". Nature Nanotechnology 5, 7(487-496)(2010).
    [16] S. M. Paek, E. Yoo, et al., "Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated exible structure". Nano Letters 9, 1(72-75)(2008).
    [17] G. Wang, X. Shen,et al., "Graphene nanosheets for enhanced lithium storage in lithium ion batteries". Carbon 47, 8(2049-2053)(2009).
    [18] D. Wei, Y. Liu, et al., "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties". Nano Letters 9, 5(1752-1758)(2009).
    [19] F. Joucken, Y. Tison, et al., "Charge transfer and electronic doping in nitrogendoped graphene". Scientic Reports 5, 14564(2015).
    [20] P. Lauffer, K. Emtsev, et al., "Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy".
    Physical Review B 77, 155426(2008).
    [21] N. T. T. Tran, S. Y. Lin, et al., "Configuration-induced rich electronic properties of bilayer graphene'. The Journal of Physical Chemistry C 119, 19(10623--10630)(2015).
    [22] C. Y. Lin, J. Y. Wu, et al., "Magneto-electronic properties of multilayer graphenes'. Physical Chemistry Chemical Physics 17, 39(26008--26035)(2015).
    [23] J. H. Wong, B. R. Wu, et al., "Strain effect on the electronic properties of single layer and bilayer graphene'. The Journal of Physical Chemistry C 116, 14(8271--8277)(2012).
    [24] M. Chi, Y. P. Zhao, et al., "Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study'. Computational Materials Science 46, 4(1085--1090)(2009).
    [25] Z. Ao, J. Yang, et al., "Enhancement of CO detection in Al doped graphene'. Chemical Physics Letters 461, 4(276--279)(2008).
    [26] Z. Ao, Q. Jiang, et al., "Al doped graphene: A promising material for hydrogen storage at room temperature'. Journal of Applied Physics 105, 074307(2009).
    [27] Z. Ao, F. Peeters, et al., "High-capacity hydrogen storage in Al-adsorbed graphene'. Physical Review B 81, 205406(2010).
    [28] K. T. Chan, J. Neaton, et al., "First-principles study of metal adatom adsorption on graphene'. Physical Review B 77, 235430(2008).
    [29] K. H. Jin, S. M. Choi, et al., "Crossover in the adsorption properties of alkali metals on graphene'. Physical Review B 82, 033414(2010).
    [30] C. Praveen, S. Piccinin, et al., "Adsorption of alkali adatoms on graphene supported by the Au/Ni (111) surface'. Physical Review B 92, 075403(2015).
    [31] C. Virojanadara, S. Watcharinyanon, et al., "Epitaxial graphene on 6 H-SiC and Li intercalation'. Physical Review B 82, 205402(2010).
    [32] K. Sugawara, K. Kanetani, et al., "Fabrication of Li-intercalated bilayer graphene'. AIP Advances 1, 022103(2011).
    [33] A. Gruneis, D. V. Vyalikh, et al., "Tunable hybridization between electronic states of graphene and a metal surface'. Physical Review B 77, 193401(2008).
    [34] M. Papagno, S. Rusponi, et al., "Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice'. Acs Nano 6, (199--204)(2011).
    [35] A. L. Walter, K. J. Jeon, et al., "Highly p-doped epitaxial graphene obtained by fluorine intercalation'. Applied Physics Letters 98, 184102(2011).
    [36] N. A. Vinogradov, K. Simonov, et al., "Controllable p-doping of graphene on Ir (111) by chlorination with FeCl3'. Journal of Physics: Condensed Matter 24, 314202(2012).
    [37] X. Wang, G. Sun, et al., "Heteroatom-doped graphene materials: syntheses, properties and applications'. Chemical Society Reviews 43, 20(7067--7098)(2014).
    [38] O. Leenaerts, H. Peelaers, et al., "First-principles investigation of graphene fluoride and graphane'. Physical Review B 82, 195436(2010).
    [39] D. K. Samarakoon, Z. Chen, et al., "Structural and electronic properties of fluorographene'. Small 7, 7(965--969)(2011).
    [40] H. Sahin, S. Ciraci, et al., "Chlorine adsorption on graphene: Chlorographene'. The Journal of Physical Chemistry C 116, 45(24075--24083)(2012).
    [41] R. Zbovril, F. Karlicky, et al., "Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene'. Small 6, 24(2885--2891)(2010).
    [42] S. Zhou, D. Siegel, et al., "Metal to insulator transition in epitaxial graphene induced by molecular doping'. Physical Review Letters 101, 086402(2008).
    [43] K. Schulte, N. Vinogradov, et al., "Bandgap formation in graphene on Ir (111) through oxidation'. Applied Surface Science 267, (74--76)(2013).
    [44] L. Tapaszto, G. Dobrik, et al., "Tuning the electronic structure of graphene by ion irradiation'. Physical Review B 78, 233407(2008).
    [45] M. Gyamfi, T. Eelbo, et al., "Fe adatoms on graphene/Ru (0001): Adsorption site and local electronic properties'. Physical Review B 84, 113403(2011).
    [46] G. Kresse, J. Furthmuller, et al., "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set'. Physical Review B 54, 11169(1996).
    [47] J. P. Perdew, K. Burke, et al., "Generalized gradient approximation made simple'. Physical Review Letters 77, 3865(1996).
    [48] P.~E. Blochl, "Projector augmented-wave method'. Physical Review B 50, 17953(1994).
    [49] T. Ohta, A. Bostwick, et al., "Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy'. Physical Review Letters 98, 206802(2007).
    [50] T. Ohta, A. Bostwick, et al., "Controlling the electronic structure of bilayer graphene'. Science 313, 5789(951--954)(2006).
    [51] S. Zhou, G. H. Gweon, et al., "Substrate-induced bandgap opening in epitaxial graphene'. Nature Materials 6, 10(770--775)(2007).
    [52] S. Y. Lin, S. L. Chang, et al., "Feature-rich electronic properties in graphene ripples'. Carbon 86, (207--216)(2015).
    [53] S. Y. Lin, S. L. Chang, et al., "H--Si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration'. Physical Chemistry Chemical Physics 17, 39(26443--26450)(2015).
    [54] J. W. Wilder, L. C. Venema, et al., "Electronic structure of atomically resolved carbon nanotubes'. Nature 391, 6662(59--62)(1998).
    [55] Y. C. Chen, D. G. De Oteyza, et al., "Tuning the band gap of graphene nanoribbons synthesized from molecular precursors'. ACS Nano 7, 7(6123--6128)(2013).
    [56] H. Huang, D. Wei, et al., "Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons". Scientifc Reports 2, 983(2012).
    [57] H. Sode, L. Talirz, et al., "Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy". Physical Review B 91, 045429(2015).
    [58] J. Choi, H. Lee, et al., "Atomic-scale investigation of epitaxial graphene grown on 6H-SiC (0001) using scanning tunneling microscopy and spectroscopy'. The Journal of Physical Chemistry C 114, 31(13344--13348)(2010).
    [59] D. Pandey, R. Reifenberger, et al., "Scanning probe microscopy study of exfoliated oxidized graphene sheets'. Surface Science 602, (1607--1613)(2008).
    [60] H. H. Chen, S. Su, et al., "Long-range interactions of bismuth growth on monolayer epitaxial graphene at room temperature'. Carbon 93, (180--186)(2015).
    [61] H. H. Chen, S. Su, et al., "Tailoring low-dimensional structures of bismuth on monolayer epitaxial graphene'. Scientific Reports 5, 11623(2015).

    Chapter 3
    [1] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite'. The Journal of Chemical Physics 53, 3(1126--1130) (1970).
    [2] C. S. Huang, M. F. Lin, et al., "Collective excitations in graphite layers". Solid State Communications 103, 11(603--606)(1997).
    [3] K. S. Novoselov, A. K. Geim, et al., "Electric field effect in atomically thin carbon films'. Science 306, 306(666--669)(2004).
    [4] K. Novoselov, A. K. Geim, et al., "Two-dimensional gas of massless Dirac fermions in graphene". Nature 438, 7065(197--200)(2005).
    [5] Y. W. Son, M. L. Cohen, et al., "Half-metallic graphene nanoribbons". Nature 444, 7117(347--349)(2006).
    [6] X. Li, X. Wang, et al., "Chemically derived, ultrasmooth graphene nanoribbon semiconductors". Science 319, 5867(1229--1232)(2008).
    [7] S. Iijima, "Helical microtubules of graphitic carbon". Nature 354, 6348(56--58)(1991).
    [8] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter". Nature 363, (603--605)(1993).
    [9] S. S. Datta, D. R. Strachan, et al., "Crystallographic etching of few-layer graphene". Nano Letters 8, 7(1912--1915)(2008).
    [10] L. Ci, Z. Xu, et al., "Controlled nanocutting of graphene". Nano Research 1, 2(116-122)(2008).
    [11] M. J. McAllister, J. L. Li, et al., "Single sheet functionalized graphene by oxidation and thermal expansion of graphite". Chemistry of Materials 19, 18(4396--4404)(2007).
    [12] S. Fujii and T. Enoki, "Cutting of oxidized graphene into nanosized pieces". Journal of the American Chemical Society 132, 29(10034--10041)(2010).
    [13] M. Y. Han, B. ozyilmaz, et al., "Energy band-gap engineering of graphene nanoribbons". Physical Review Letters 98, 206805(2007).
    [14] Z. Chen, Y. M. Lin, et al., "Graphene nano--ribbon electronics". Physica E: Low--dimensional Systems and Nanostructures 40, 2(228--232)(2007).
    [15] X. Wang, Y. Ouyang, et al., "Room--temperature all--semiconducting sub--10--nm graphene nanoribbon field--effect transistors". Physical Review Letters 100, 206803(2008).
    [16] P. Ruffieux, J. Cai, et al., "Electronic structure of atomically precise graphene nanoribbons". Acs Nano 6, 8(6930--6935)(2012).
    [17] H. Huang, D. Wei, et al., "Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons". Scientific Reports 2, 983(2012).
    [18] D. V. Kosynkin, A. L. Higginbotham, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature 458, 7240(872--876)(2009).
    [19] F. Cataldo, G. Compagnini, et al., "Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes". Carbon 48, 9(2596--2602)(2010).
    [20] P. Kumar, L. Panchakarla, et al., "Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons". Nanoscale 3, 5(2127--2129)(2011).
    [21] A. L. Elias, A. R. Botello-Mendez, et al., "Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels". Nano Letters 10, 2(366--372)(2009).
    [22] U. K. Parashar, S. Bhandari, et al., "Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes". Nanoscale 3, 9(3876--3882)(2011).
    [23] L. Jiao, L. Zhang, et al., "Narrow graphene nanoribbons from carbon nanotubes". Nature 458, 7240(877--880)(2009).
    [24] L. Jiao, L. Zhang, et al., "Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes". Nano Research 3, 6(387--394)(2010).
    [25] A. V. Talyzin, S. Luzan, et al., "Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphane nanoribbons". ACS Nano 5, 6(5132--5140)(2011).
    [26] M. C. Paiva, W. Xu, et al., "Chemically derived, ultrasmooth graphene nanoribbon semiconductors". Science 319, 5867(1229--1232)(2010).
    [27] K. Kim, A. Sussman, et al., "Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes". ACS Nano 4, 3(1362-1366)(2010).
    [28] A. G. Cano-Marquez, F. J. Rodriguez-Macias, et al., "Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes". Nano Letters 9, 4(1527--1533)(2009).
    [29] D. B. Shinde, J. Debgupta, et al., "Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons". Journal of the American Chemical Society 133, 12(4168--4171)(2011).
    [30] J. Campos-Delgado, J. M. Romo-Herrera, et al., "Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons". Nano Letters 8, 9(2773--2778)(2008).
    [31] X. Yang, X. Dou, et al., "Two-dimensional graphene nanoribbons". Journal of the American Chemical Society 130, 13(4216--4217)(2008).
    [32] H. C. Chung, C. P. Chang, et al., "Electronic and optical properties of graphene nanoribbons in external fields". Physical Chemistry Chemical Physics 18, 11(7573--7616)(2016).
    [33] W. Y. Kim and K. S. Kim, "Prediction of very large values of magnetoresistance in a graphene nanoribbon device". Nature Nanotechnology 3, 7(408--412)(2008).
    [34] L. Yang, M. L. Cohen, et al., "Excitonic effects in the optical spectra of graphene nanoribbons". Nano Letters 7, 10(3112--3115)(2007).
    [35] M. F. Lin and F. L. Shyu, "Optical properties of nanographite ribbons". Journal of the Physical Society of Japan 69, 11(3529--3532)(2000).
    [36] Z. Li, H. Qian, et al., "Role of symmetry in the transport properties of graphene nanoribbons under bias". Physical Review Letters 100, 206802(2008).
    [37] D. Basu, M. Gilbert, et al., "Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors". Applied Physics Letters 94, 042114(2008).
    [38] Y. W. Son, M. L. Cohen, et al., "Energy gaps in graphene nanoribbons". Physical Review Letters 97, 216803(2006).
    [39] V. Barone, O. Hod, et al., "Electronic structure and stability of semiconducting graphene nanoribbons". Nano Letters 6, 12(2748--2754)(2006).
    [40] K. A. Ritter and J. W. Lyding, "The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons". Nature Materials 8, 3(235--242)(2009).
    [41] S. L. Chang, S. Y. Lin, et al., "Geometric and electronic properties of edge-decorated graphene nanoribbons". Scientific Reports 4, 6038(2014).
    [42] Y. T. Lin, H. C. Chung, et al., "Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons". Physical Chemistry Chemical Physics 17, 25(16545--16552)(2015).
    [43] J. L. Johnson, A. Behnam, et al., "Hydrogen Sensing Using Pd--Functionalized Multi--Layer Graphene Nanoribbon Networks". Advanced Materials 22, 43(4877--4880)(2010).
    [44] J. Lin, Z. Peng, et al., "Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries". ACS Nano 7, 7(6001--6006)(2013).
    [45] Y. C. Huang, C. P. Chang, et al., "Magnetoabsorption spectra of bilayer graphene ribbons with Bernal stacking". Physical Review B 78, 115422(2008).
    [46] H. Sadeghi, M. Ahmadi, et al., "Channel conductance of ABA stacking trilayer graphene nanoribbon field-effect transistor". Modern Physics Letters B 26, 1250047(2012).
    [47] C. Y. Lin, S. C. Chen, et al., "Curvature effects on magnetoelectronic properties of nanographene ribbons". Journal of the Physical Society of Japan 81, 064719(2012).
    [48] S. L. Chang, B. R. Wu, et al., Curvature effects on electronic properties of armchair graphene nanoribbons without passivation". Physical Chemistry Chemical Physics 14, 47(16409--16414)(2012).
    [49] C. P. Chang, B. R. Wu, et al., "Deformation effect on electronic and optical properties of nanographite ribbons". Journal of Applied Physics 101, 063506(2007).
    [50] S. Y. Lin, S. L. Chang, et al., "Feature-rich electronic properties in graphene ripples". Carbon 86, (207--216)(2015).
    [51] C. P. Chang, Y. C. Huang, et al., "Electronic and optical properties of a nanographite ribbon in an electric field". Carbon 44, 3(508--515)(2006).
    [52] E. J. Kan, Z. Li, et al., "Will zigzag graphene nanoribbon turn to half metal under electric field ?". Applied Physics Letters 91, 243116(2007).
    [53] H. Raza and E. C. Kan, "Armchair graphene nanoribbons: Electronic structure and electric-field modulation". Physical Review B 77, 245434(2008).
    [54] Y. C. Huang, C. P. Chang, et al., "Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons". Nanotechnology 18, 495401(2007).
    [55] J. Liu, A. Wright, et al., "Strong terahertz conductance of graphene nanoribbons under a magnetic field". Applied Physics Letters 93, 041106(2008).
    [56] A. Saffarzadeh and R. Farghadan, "A spin-filter device based on armchair graphene nanoribbons". Applied Physics Letters 98, 023106(2011).
    [57] L. Tapaszto, G. Dobrik, et al., "Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography". Nature Nanotechnology 3, 7(397--401)(2008).
    [58] H. Sode, L. Talirz, et al., "Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy". Physical Review B 91, 045429(2015).
    [59] Y. C. Chen, D. G. De Oteyza, et al., "Tuning the band gap of graphene nanoribbons synthesized from molecular precursors". ACS Nano 7, 7(6123--6128)(2013).
    [60] Y. Mao, W. Hao, et al., "Edge-adsorption of potassium adatoms on graphene nanoribbon: A first principle study". Applied Surface Science 280, 1(698--704)(2013).
    [61] Z. Wang, J. Xiao, et al., "Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon". Applied Physics A 110, 1(235--239)(2013).
    [62] C. G. da Rocha, P. A. Clayborne, et al., "Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters". Physical Chemistry Chemical Physics 16, 8(3558-3565)(2014).
    [63] C. Uthaisar, V. Barone, et al., "Lithium adsorption on zigzag graphene nanoribbons". Journal of Applied Physics 106, 113715(2009).
    [64] G. Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". Physical Review B 54, 11169(1996).
    [65] J. P. Perdew, K. Burke, et al., "Generalized gradient approximation made simple". Physical Review Letters 77, 3865(1996).
    [66] P. E. Blochl, "Projector augmented-wave method". Physical Review B 50, 17953(1994).
    [67] C. Virojanadara, S. Watcharinyanon, et al., "Epitaxial graphene on 6 H-SiC and Li intercalation". Physical Review B 82, 205402(2010).
    [68] M. C. Lin, M. Gong, et al., ``An ultrafast rechargeable aluminium-ion battery". emph{Nature} extbf{520}, 7547(324--328)(2015).
    [69] J. V. Rani, V. Kanakaiah, et al., ``Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum--ion battery". emph{Journal of The Electrochemical Society} extbf{160}, 10(1781--1784)(2013).
    [70] S. M. Paek, E. Yoo, et al., "Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure". Nano Letters 9, 1(72--75)(2008).
    [71] G. Wang, X. Shen, et al., "Graphene nanosheets for enhanced lithium storage in lithium ion batteries". Carbon 47, 8(2049-2053)(2009).
    [72] K. Sugawara, T. Sato, et al., "Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy". Physical Review B 73, 045124(2006).
    [73] T. Ohta, A. Bostwick, et al., "Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy". Physical Review Letters 98, 206802(2007).
    [74] A. Bostwick, T. Ohta, et al., "Quasiparticle dynamics in graphene". Nature Physics 3, 1(36--40)(2007).
    [75] T. Ohta, A. Bostwick, et al., "Controlling the electronic structure of bilayer graphene". Science 313, 5789(951--954)(2006).
    [76] C. Coletti, S. Forti, et al., "Revealing the electronic band structure of trilayer graphene on SiC: An angle-resolved photoemission study". Physical Review B 88, 155439(2013).
    [77] S. Zhou, D. Siegel, et al., "Metal to insulator transition in epitaxial graphene induced by molecular doping". Physical Review Letters 101, 086402(2008).
    [78] K. Schulte, N. Vinogradov, et al., "Bandgap formation in graphene on Ir (111) through oxidation". Applied Surface Science 267, 15(74--76)(2013).
    [79] Z. Klusek, "Investigations of splitting of the $pi$ bands in graphite by scanning tunneling spectroscopy". Applied Surface Science 151, 3(251--261)(1999).
    [80] G. Li, A. Luican, et al., "Scanning tunneling spectroscopy of graphene on graphite". Physical Review Letters 102, 176804(2009).
    [81] A. Luican, G. Li, et al., "Single-layer behavior and its breakdown in twisted graphene layers". Physical Review Letters 106, 126802(2011).
    [82] G. Li, A. Luican, et al., "Observation of Van Hove singularities in twisted graphene layers". Nature Physics 6, 2(109--113)(2010).
    [83] V. Cherkez, G. T. de Laissardiere, et al., "Van Hove singularities in doped twisted graphene bilayers studied by scanning tunneling spectroscopy". Physical Review B 91, 155428(2015).
    [84] J. W. Wilder, L. C. Venema, et al., "Electronic structure of atomically resolved carbon nanotubes". Nature 391, 6662(59--62)(1998).
    [85] T. W. Odom, J. L. Huang, et al., "Atomic structure and electronic properties of single-walled carbon nanotubes". Nature 391, 6662(62--64)(1998).
    Chapter 4
    [1] J. L. Wang, L. Ma, et al., "Transition-Metal-Catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature". Angewandte Chemie International Edition 50, 35(8041--8045)(2011).
    [2] M. Y. Han, B. Özyilmaz, et al., "Energy band-gap engineering of graphene nanoribbons". Physical Review Letters 98, 206805(2007).
    [3] W. J. Yu, and X. F. Duan, "Tunable transport gap in narrow bilayer graphene nanoribbons'. Scientific Reports 3, 1248(2013).
    [4] L. Jiao, L. Zhang, et al., "Narrow graphene nanoribbons from carbon nanotubes". Nature 458, 7240(877--880)(2009).
    [5] A. L. Elias, A. R. Botello-Mendez, et al., "Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels". Nano Letters 10, 2(366--372)(2009).
    [6] Y. R. Kang, Y. L. Li, et al., "Precise unzipping of flattened carbon nanotubes to regular graphene nanoribbons by acid cutting along the folded edges". Journal of Materials Chemistry 22, 32(16283--16287)(2012).
    [7] D. V. Kosynkin, A. L. Higginbotham, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons". Nature 458, 7240(872--876)(2009).
    [8] J. Campos-Delgado, J. M. Romo-Herrera, et al., "Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons". Nano Letters 8, 9(2773--2778)(2008).
    [9] M. Sprinkle, M. Ruan, et al., "Scalable templated growth of graphene nanoribbons on SiC". Nature Nanotechnology 5, 10(727--731)(2010).
    [10] J. Cai, P. Ruffieux, et al., "Atomically precise bottom-up fabrication of graphene nanoribbons". Nature 466, 7305(470--473)(2010).
    [11] H. Huang, D. Wei, et al., "Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons'. Scientific Reports 2, 983(2012).
    [12] Y. C. Chen, D. G. De Oteyza, et al., "Tuning the band gap of graphene nanoribbons synthesized from molecular precursors'. ACS Nano 7, 7(6123--6128)(2013).
    [13] P. Ruffieux, J. Cai, et al., "Electronic structure of atomically precise graphene nanoribbons". ACS Nano 6, 8(6930--6935)(2012).
    [14] L. Talirz, H. Sode, et al., "Termini of bottom-up fabricated graphene nanoribbons". Journal of the American Chemical Society 135, 6(2060--2063)(2013).
    [15] F. Cervantes-Sodi, G. Csanyi, et al., "Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties". Physical Review B 77, 165427(2008).
    [16] D. B. Lu, Y. L. Song, et al., "Energy gap modulation of graphene nanoribbons by F termination". Applied Surface Science 257, 15(6440--6444)(2011).
    [17] S. S. Chauhan, P. Srivastava, et al., "Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach". Applied Nanoscience 4, 4(461--467)(2013).
    [18] H. Sevincli, M. Topsakal, et al., "Electronic and magnetic properties of 3 d transition--metal atom adsorbed graphene and graphene nanoribbons". Physical Review B 77, 195434(2008).
    [19] S. S. Yu, T. Z. Wei, et al., "Electronic properties of nitrogen--atom--adsorbed graphene nanoribbons with armchair edges". IEEE Transactions on Nanotechnology 9, 2(243--247)(2010).
    [20] D. Krepel and O. Hod, "Lithium adsorption on armchair graphene nanoribbons". Surface Science 605, 17(1633--1642)(2011).
    [21] H. Tsuchiya, H. Hosokawa, et al., "Theoretical Evaluation of Ballistic Electron Transport in Field--Effect Transistors with Semiconducting Graphene Channels". Japanese Journal of Applied Physics 51, 055103(2012).
    [22] N. Kharche, Y. Zhou, et al., "Effect of layer stacking on the electronic structure of graphene nanoribbons". ACS Nano 5, 8(6096--6101)(2011).
    [23] B. Sahu, H. K. Min, et al., "Energy gaps, magnetism, and electric--field effects in bilayer graphene nanoribbons". Physical Review B 78, 045404(2008).
    [24] S. L. Chang, B. R. Wu, et al., "Configuration--dependent geometric and electronic properties of bilayer graphene nanoribbons". Carbon 77, (1031--1039)(2014).
    [25] K. K. Paulla and A. A. Farajian, "Stacking stability, emergence of magnetization and electromechanical nanosensing in bilayer graphene nanoribbons". Journal of Physics: Condensed Matter 25, 115303(2013).
    [26] C. P. Chang, Y. C. Huang, et al., "Electronic and optical properties of a nanographite ribbon in an electric field". Carbon 44, 3(508--515)(2006).
    [27] E. J. Kan, Z. Li, et al., "Will zigzag graphene nanoribbon turn to half metal under electric field ?". Applied Physics Letters 91, 243116(2007).
    [28] X. Y. Hu, H. W. Tian, et al., "Metallic-semiconducting phase transition of the edge-oxygenated armchair graphene nanoribbons". Chemical Physics Letters 501, 1(64--67)(2010).
    [29] Y. C. Huang, C. P. Chang, et al., "Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons". Nanotechnology 18, 495401(2007).
    [30] J. Y. Wu, Y. H. Chiu, et al., "Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons". Journal of Nanoscience and Nanotechnology 9, 5(3193--3200)(2009).
    [31] V. P. Gusynin, V. A. Miransky, et al., "Edge states on graphene ribbons in magnetic field: Interplay between Dirac and ferromagnetic-like gaps". Physical Review B 79, 115431(2009).
    [32] C. P. Chang, B. R. Wu, et al., "Deformation effect on electronic and optical properties of nanographite ribbons". Journal of Applied Physics 101, 063506(2007).
    [33] X. Peng, F. Tang, et al., "Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study". Journal of Physics: Condensed Matter 24, 075501(2012).
    [34] X. Peng and S. Velasquez, "Strain modulated band gap of edge passivated armchair graphene nanoribbons". Applied Physics Letters 98, 023112(2011).
    [35] L. Yan, Y. B. Zheng, et al., "Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials". Chemical Society Reviews 41, 1(97--114)(2012).
    [36] A. J. Du, S. C. Smith, et al., "Formation of single--walled carbon nanotube via the interaction of graphene nanoribbons: ab initio density functional calculations". Nano Letters 7, 11(3349--3354)(2007).
    [37] Y. Wang, C. Cao, et al., "Metal--terminated graphene nanoribbons". Physical Review B 82, 205429(2010).
    [38] Y. Mao, W. Hao, et al., "Edge--adsorption of potassium adatoms on graphene nanoribbon: A first principle study". Applied Surface Science 280, 12(698--704)(2013).
    [39] N. Gorjizadeh, A. A. Farajian, et al., "Spin and band--gap engineering in doped graphene nanoribbons". Physical Review B 78, 155427(2008).
    [40] G. Lee and K. Cho, "Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation". Physical Review B 79, 165440(2009).
    [41] A. J. Simbeck, D. Gu, et al., "Electronic structure of oxygen-functionalized armchair graphene nanoribbons". Physical Review B 88, 035413(2013).
    [42] M. Vanin, J. Gath, et al., "First--principles calculations of graphene nanoribbons in gaseous environments: Structural and electronic properties". Physical Review B 82, 195411(2010).
    [43] A. P. Seitsonen, A. M. Saitta, et al., "Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia". Physical Review B 82, 115425(2010).
    [44] Y. Pan and Z. Yang, "Exploration of magnetism in armchair graphene nanoribbons with radical groups". Chemical Physics Letters 518, (104--108)(2011).
    [45] D. Gunlycke, J. Li, et al., "Altering low-bias transport in zigzag-edge graphene nanostrips with edge chemistry". Applied Physics Letters 91, 112108(2007).
    [46] B. Sarikavak-Lisesivdin, S. B. Lisesivdin, et al., "Ab initio study of Ru--terminated and Ru--doped armchair graphene nanoribbons". Molecular Physics 110, 18(2295-2300)(2012).
    [47] G. Autes and O. V. Yazyev, "Engineering quantum spin Hall effect in graphene nanoribbons via edge functionalization". Physical Review B 87, 241404(2013).
    [48] P. Wagner, C. P. Ewels, et al., "Band gap engineering via edge--functionalization of graphene nanoribbons". The Journal of Physical Chemistry C 117, 50(26790--26796)(2013).
    [49] K. Nakada, M. Fujita, et al., "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence". Physical Review B 54, 17954(1996).
    [50] F. Ma, Z. Guo, et al., "First-principle study of energy band structure of armchair graphene nanoribbons". Solid State Communications 152, 13(1089--1093)(2012).
    [51] Y. W. Son, M. L. Cohen, et al., "Energy gaps in graphene nanoribbons". Physical Review Letters 97, 216803(2006).
    [52] A. Batra, D. Cvetko, et al., "Probing the mechanism for graphene nanoribbon formation on gold surfaces through X--ray spectroscopy". Chemical Science 5, 11(4419--4423)(2014).
    [53] G. Z. Magda, X. Jin, et al., "Room--temperature magnetic order on zigzag edges of narrow graphene nanoribbons". Nature 514, (608-611)(2014).
    [54] Y. Y. Li, M. X. Chen, "Direct experimental determination of onset of electron--electron interactions in gap opening of zigzag graphene nanoribbons". Nature Communications 5, 4311(2014).
    [55] C. Tao, L. Jiao, et al., "Spatially resolving edge states of chiral graphene nanoribbons". Nature Physics 7, 8(616--620)(2011).
    [56] G. Kresse and J. Furthmuller, "Intrinsic and Rashba spin-orbit interactions in graphene sheets". Physical Review B 54, 11169(1996).
    [57] J. P. Perdew, K. Burke, et al., "Generalized gradient approximation made simple". Physical Review Letters 77, 3865(1996).
    [58] G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method". Physical Review B 59, 1758(1999).
    [59] W. Tang, E. Sanville, et al., "A grid--based Bader analysis algorithm without lattice bias". Journal of Physics: Condensed Matter 21, 084204(2009).
    [60] X. Zhang, O. V. Yazyev, et al., "Experimentally engineering the edge termination of graphene nanoribbons". ACS Nano 7, 1(198-202)(2012).
    [61] J. W. G. Wilder, L. C. Venema, et al., "Electronic structure of atomically resolved carbon nanotubes". Nature 391, (59--62)(1998).
    [62] T. W. Odom, J. L. Huang, et al., "Atomic structure and electronic properties of single-walled carbon nanotubes". Nature 391, (62--64)(1998).
    [63] F. Varchon, P. Mallet, et al., "Ripples in epitaxial graphene on the Si--terminated SiC (0001) surface". Physical Review B 77, 235412(2008).
    [64] A. V. De Parga, F. Calleja, et al., "Periodically rippled graphene: growth and spatially resolved electronic structure". Physical Review Letters 100, 056807(2008).
    [65] L. Tapaszto, T. Dumitrica, et al., "Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene". Nature Physics 8, 10(739--742)(2012).
    [66] S. Unarunotai, J. C. Koepke, et al., "Layer--by--layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer". ACS Nano 4, 10(5591--5598)(2010).
    [67] J. Lahiri, Y. Lin, et al., "An extended defect in graphene as a metallic wire". Nature Nanotechnology 5, 5(326--329)(2010).
    [68] R. Balog, B. Jorgensen, et al., "Bandgap opening in graphene induced by patterned hydrogen adsorption". Nature Materials 9, 4(315--319)(2010).
    [69] J. Renard, M. B. Lundeberg, et al., "Real--time imaging of K atoms on graphite: interactions and diffusion". Physical Review Letters 100, 037601(2011).
    [70] T. Kondo, S. Casolo, et al., "Atomic--scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms". Physical Review B 86, 035436(2012).
    [71] J. Cervenka, M. I. Katsnelson, et al., "Room--temperature ferromagnetism in graphite driven by two--dimensional networks of point defects". Nature Physics 5, 11(840--844)(2009).
    [72] S. Y. Zhou, G. H. Gweon, et al., "Substrate--induced bandgap opening in epitaxial graphene". Nature Materials 6, 10(770--775)(2007).
    [73] I. Pletikosic, M. Kralj, et al., "Dirac cones and minigaps for graphene on Ir (111)". Physical Review Letters 102, 056808(2009).
    [74] S.Y. Zhou, G.H. Gweon, et al., "First direct observation of Dirac fermions in graphite". Nature Physics 2, 9(595--599)(2006).
    [75] A. Gruneis, C. Attaccalite, et al., "Electron-electron correlation in graphite: a combined angle-resolved photoemission and first-principles study". Physical Review Letters 100, 037601(2008).
    [76] P. Lauffer, K. Emtsev, et al., "Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy'. Physical Review B 77, 155426(2008).
    [77] L. Tapaszto, G. Dobrik, et al., "Tuning the electronic structure of graphene by ion irradiation'. Physical Review B 78, 233407(2008).
    [78] M. Gyamfi, T. Eelbo, et al., "Fe adatoms on graphene/Ru (0001): Adsorption site and local electronic properties'. Physical Review B 84, 113403(2011).
    [79] G. M. Rutter, N. P. Guisinger, et al., "Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy". Physical Review B 76, 235416(2007).
    [80] T. Matsui, H. Kambara, et al., "STS observations of Landau levels at graphite surfaces". Physical Review Letters 94, 226403(2005).
    [81] Y. Niimi, T. Matsui, et al., "Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges". Physical Review B 73, 085421(2006).
    [82] Y. Kobayashi, K. Fukui, et al., "Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy". Physical Review B 71, 193406(2005).
    [83] V. Meunier and P. Lambin, "Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes". Carbon 38, 11(1729--1733)(2000).
    Publications
    [1] S. Y. Lin, Y. T. Lin, et al., "Feature-rich electronic properties of aluminum-doped graphenes'. The electronic properties of aluminum-doped graphenes". Carbon 120, (209-218)(2017).
    [2] Y. T. Lin, S. Y. Lin, et al., "Alkali-created rich properties in graphene nanoribbons: Chemical bondings". Scientific Reports 7, 1722(2017).
    [3] D. K. Nguyen, Y. T. Lin, et al., "Fluorination-enriched electronic and magnetic properties in graphene nanoribbons". Physical Chemistry Chemical Physics 19, 31(20667-20676)(2017).
    [4] N. T. T. Tran, S. Y. Lin, et al., "Chemical bonding-induced rich electronic properties of oxygen adsorbed few-layer graphenes". Physical Chemistry Chemical Physics 18, 5(4000-4007)(2016).
    [5] Y. T. Lin, H. C. Chung, et al., "Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons". Physical Chemistry Chemical Physics 17, 25(16545--16552)(2015).
    [6] H. C. Chung, Y. T. Lin, et al., "Magnetoelectronic and optical properties of nonuniform graphene nanoribbons". Physical Chemistry Chemical Physics 17, 25(16545--16552)(2015).

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE