| 研究生: |
魏仕杰 Wei, Shih-Chieh |
|---|---|
| 論文名稱: |
農廢燃燒對大氣氣膠濃度與組成之影響 Impacts of Rice Straw Open Burning on the Ambient Aerosol Concentrations and Chemical Compositions |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 農廢燃燒 、指紋 、CMB 、PMF 、指標性元素 |
| 外文關鍵詞: | open-burnong, source profile, CMB, PMF |
| 相關次數: | 點閱:133 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對2008年11月至2009年2月於台南市成功大學卓群大樓頂樓進行密集的採樣,於每天早上8點與晚上8點進行更換樣品,且同時進行PM10與PM2.5的採集,目的在觀測農廢燃燒期間大氣氣膠濃度與組成之影響與改變,所採集到的樣品先經過後處理及成分分析後由受體模式CMB與PMF互相驗證其各項污染源之貢獻度。
本研究另外進行了一次稻草燃燒試驗,目的在由實地的稻草燃燒試驗中求得其污染源之指紋(source profile),並且觀察其在不同的條件下,包含採樣時間多少,試驗所燃燒的稻草重量及堆放稻草的方式,其結果顯示在燃燒稻草時的堆放方式有較大的差異性,在堆放方式為堆放及攤放的條件下所採集到細微粒及粗微粒之指紋主要追蹤元素分別以OC、Cl-、K+、EC為主,其中重要的追蹤元素-去水醣類Levoglucosan也佔了很大的比例;而在稻草堆放方式為攤放下因其使稻草較完全的燃燒,因此所得到的EC在指紋中所佔的比例大幅上升,約比堆放時大了6倍。
本研究利用兩種受體模式分別為CMB與PMF進行比對,其中PMF模式則設定三種不同的污染源下進行解析,分別為PMF10、PMF11及PMF12,在CMB模式上成功解析出11個污染源,而PMF10、PMF11、PMF12分別解析出8、8及7個污染源可辨識的污染源;而CMB與PMF在解析貢獻度上最大的差異在地表揚塵及燃油鍋爐,CMB解析出之地表揚塵平均有40%的貢獻度,而PMF平均只有20%左右的貢獻度;燃油鍋爐方面CMB解析出之貢獻度不足1%,而PMF平均解析出10%之貢獻度;其他CMB與PMF在交通源、海洋飛沫、硫酸銨、硝酸銨、農廢燃燒之貢獻度推估上較為接近,但在PMF模式推估方面平均有10%之貢獻度無法辨認其來源。針對CMB與PMF逐筆貢獻度比對結果,皆不能得到一良好的關係性(R2),其主要原因應為所收集到的污染源組成不完整,再來即是在本研究中可辨識污染源的特殊指標性元素不足或濃度過低,造成判定上之困難。
Intensive samplings were performed on the top floor of Juo Chiun Building, National Cheng Kung University, Tainan from December 2008 to February 2009. PM10 and PM2.5, with duration time of 12 hours, were both measured at 8 a.m. and 8 p.m. LST. The objectives of this study are to observe the variations of PM concentrations and compositions during open-burning of rice straw and to compare the contributions analyzed by CMB and PMF.
An additional field experience of straw burning was conducted for the analysis of its source profile. Under various conditions such as different sampling periods, different loads, and different styles of collecting straws for burning, the results shows that significant difference only exists in the different ways of collection: piling and spreading. In the situation of piling and spreading, the major tracing species of PM2.5 and PM10 were OC, Cl-, K+, and EC and Levoglucosan, the other important tracing specie, contributes largely to PM2.5 and PM10. Straws spread out were burned more completely and the EC increases approximately by six times.
CMB and PMF were used in the study and compared. PMF was performed in different amounts of sources, that is, PMF10, PMF11, and PMF12. CMB found successfully 11 different sources, but PMF10, PMF11, and PMF12 found 8, 8, and 7 sources respectively. The significant difference of source by CMB and PMF is crustal and oil-fired boiler: CMB reveals crustal contribute 40% to particulate matter and only 20% for PMF.CMB indicates the contribution of oil-fired boiler is less than 1%, but 10% for PMF. Other contribution estimated such traffic, 50% sea spray, agriculture waste burning, ammonium sulfate, and ammonium nitrate are similar. However, 10% contribution is not identified in PMF. Comparing the result by PMF and CMB, they were not correlated well due to the incomplete source profiles and the deficiency and low concentration of tracing species.
1. Andreae, M. O. Talbot, R. W, et al. (1990) " Precipitaion chemistry in Central Amazonia" Journal of Geophysical Research, Vol. 95, pages 16,987-16,999.
2. Begum, B. A., Biseas, S. K., Hopke, P. K., (2007) " Source apportionment of air Particular Matter by Chemical Mass Balance(CMB) and Comparison with Positive Matrix Factorization (PMF) Model. " Aerosol and Air Quality Research.",Vol. 7, No.4, pages 446-468.
3. Chan, Y. C., R. W. Simpson, et al. (1997). "Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia." Atmospheric Environment 31(22): 3773-3785.
4. Chen, L. W. A., J. G. Watson, et al. (2007). "Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models." Environmental Science & Technology 41(8): 2818-2826.
5. Engling G., Lee, J. J. et al.(2009) "Size-Resolved anhydrosugur composition in smoke aerosol from field burning of rice straw. " Aerosol Science and Technology,43:662-672.
6. Falkovich, A. H. Graber., E. R., et al. (2005) "Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning ,transition and wet periods."Atmos. Chem. Phys., 5, 781-797.
7. Hopke, P. K., (1985) "Receptor model in environmental chemistry." John wiley&Sons, Inc., New York.
8. He., K. Yang., F. Ma., Y. Zhang., Q. Yao., X. (2001). "The characteristics of PM2.5 in Beijing, China. " Atmospheric Environmental 35 (2001) 4959-4970.
9. Hays, M. D., P. M. Fine, et al. (2005). "Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions." Atmospheric Environment 39(36): 6747-6764.
10. Han, J. S. Moon, K.J. et al.(2006). "Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background sitr in East Asia. " Atmos. Chem. Phys., 6, 211-223.
11. Ho, K. F., S. C. Lee, et al. (2003). "Characterization of chemical species in PM2.5 and PM10 aerosols in Hong kong." Atmospheric Environment 37(1): 31-39.
12. Hemann., J. G. Brinkman., G. L. Dutton., S. J. Hannigan., M. P. Milford., J. B. Miller., S. L. (2009). "Assessing positive matrix factorization model fit: a new method to estimate uncertainly and bias in factor contributions at the measurement time scale. " Atmos. Chem. Phys., 9, 497-513.
13. Jaffrezo, J. L., Davidson, C. I. et al.(1998). "Biomass burning signatures in the atmosphere of central Greenland." Journal of Geophysical Research, Vol. 103, NO. D23 pages 31,067-31078.
14. Jeong C. H. (2007). "Data analysis and source apportionment of PM2.5 in Golden,British Columbia using Positive Matrix Factorization(PMF). " Southern Ontario Centre Atmospheric Aerosol Research University of Toronto.
15. Kawamura, K. and I. R. Kaplan (1987). "Motor Exhaust Emissions as a Primary Source for Dicarboxylic-Acids in Los-Angeles Ambient Air." Environmental Science & Technology 21(1): 105-110.
16. Kim., E. Larson., T. V. et al.,(2003). "Source identification of PM2.5 in an arid Northwest U.S. City by positive matrix factorization. "Atmospheric Research 66, pp291-305.
17. Kim., E. Hopke., P. K. Qin., Y. (2005). "Estimation of Organic Carbon Blank Values and Error Structures of the Speciation Trends Network Data for Source Apportionment. " Journal of the Air & Waste Management Association Volume 55 August 2005.
18. Lee, E., C. K. Chan, et al. (1999). "Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong." Atmospheric Environment 33(19): 3201-3212.
19. Lee, J. J., G. Engling, et al. (2008). "Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning." Atmospheric Environment 42(35): 8300-8308.
20. Lee, S., W. Liu, et al. (2008). "Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoriniz sites in the southeastern United States." Atmospheric Environment 42(18): 4126-4137.
21. Lewandowski, M., M. Jaoui, et al. (2007). "Composition of PM2.5 during the summer of 2003 in Research Triangle Park, North Carolina." Atmospheric Environment 41(19): 4073-4083.
22. Norton, R. B., J. M. Roberts, et al. (1983). "Tropospheric Oxalate." Geophysical Research Letters 10(7): 517-520.
23. Osada, K., M. Kido, et al. (2002). "Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2770 m a.s.l.), central Japan, during the Shurin period in 2000." Atmospheric Environment 36(35): 5469-5477.
24. Paatero, P. and U. Tapper (1993). "Analysis of Different Modes of Factor-Analysis as Least-Squares Fit Problems." Chemometrics and Intelligent Laboratory Systems 18(2): 183-194.
25. Paatero, P. (1997). "Least squares formulation of robust non-negative factor analysis." Chemometrics and Intelligent Laboratory Systems 37(1): 23-35.
26. Pakkanen, T. A., K. Loukkola, et al. (2001). "Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area." Atmospheric Environment 35(32): 5381-5391.
27. Paatero, P. and P. K. Hopke (2003). "Discarding or downweighting high-noise variables in factor analytic models." Analytica Chimica Acta 490(1-2): 277-289.
28. Rizzo, M. J. and P. A. Scheff (2007). "Utilizing the Chemical Mass Balance and Positive Matrix Factorization models to determine influential species and examine possible rotations in receptor modeling results." Atmospheric Environment 41(33): 6986-6998.
29. Sheesley, R. J., J. J. Schauer, et al. (2003). "Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia." Journal of Geophysical Research-Atmospheres 108(D9): -.
30. Sillanpaa, M., S. Saarikoski, et al. (2005). "Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki." Science of the Total Environment 350(1-3): 119-135.
31. Song, Y., Zhang, Y., et al., (2006). "Source apportionment of PM2.5 in Beijing by positive matrix factorization." Atmospheric Environment Vol.40 Pages 1526-1537,
32. Sun, Y., G. S. Zhuang, et al. (2006). "Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing." Atmospheric Environment 40(16): 2973-2985.
33. Saarikoski, S., H. Timonen, et al. (2008). "Sources of organic carbon in fine particulate matter in northern European urban air." Atmospheric Chemistry and Physics 8(20): 6281-6295.
34. Viana, M., J. M. Lopez, et al. (2008). "Tracers and impact of open burning of rice straw residues on PM in Eastern Spain." Atmospheric Environment 42(8): 1941-1957.
35. Virkkula, A., K. Teinila, et al. (2006). "Chemical composition of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site." Atmospheric Chemistry and Physics 6: 3407-3421.
36. Wall, S. M., W. John, et al. (1988). "Measurement of Aerosol Size Distributions for Nitrate and Major Ionic Species." Atmospheric Environment 22(8): 1649-1656.
37. Watson, J. G., J. C. Chow, et al. (1994). "Chemical Mass-Balance Source Apportionment of Pm(10) during the Southern California Air-Quality Study." Aerosol Science and Technology 21(1): 1-36.
38. Watson, J. G., J. C. Chow, et al. (2001). "PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995." Chemosphere 43(8): 1141-1151.
39. Wang, Y. Zhuang, G. et al., (2006). "Characteristics and source of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China." Atmospheric Research 84 (2007) 169-181.
40. Xie, Y. L., P. K. Hopke, et al. (1999). "Identification of source nature and seasonal variations of Arctic aerosol by the multilinear engine." Atmospheric Environment 33(16): 2549-2562.
41. Xie, S. D., Z. Liu, et al. (2008). "Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization." Atmospheric Chemistry and Physics 8(10): 2701-2716.
42. Yamasoe, M. A., Artaxo, P., Miguel, A. H., Allen., A. G., (1999). "Chemical composition of aerosol particle from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. " Atmospheric Environment 34 (2000) 1641-1653.
43. Yao., X. Fang., M. Chen., C. K. Ho., K. F. Lee., S. C. (2003). "Characterization of dicarboxylic acid in PM2.5 in Hong Kong. "Atmospheric Environment 38 (2004) 963-970.
44. 林志忠、陳瑞仁、陳怡伶、張詩雨、曾勝賢、楊涴淳,「稻草露天燃燒排放粒狀物特性之探討。」,中華民國環境工程學會 2006空氣污染控制技術研討會。
45. 鄭曼婷、蘇怡如、何燕婷、林煜棋,「農廢燃燒與沙塵暴的懸浮微粒特性分析。」,中華民國環境工程學會 2006空氣污染控制技術研討會。
46. 吳旻修,「稻草露天燃燒之排放係數。」,中華民國環境工程學會 2009空氣污染控制技術研討會。
47. 鄭曼婷、邱嘉斌、王景良、賴宏志,「南高屏地區空氣污染總量管制規劃-E2子計畫 受體模式空氣污染事件之應用與解析。」行政院環保署 EPA-88-FA42-03-F5。
48. 陳穩至,「大氣中懸浮微粒之特性與來源」,碩士論文,國立成功大學環境工程研究所,(1999)。
49. 葉士鳴,「大氣中懸浮微粒含碳成分之分佈與來源」,碩士論文,成功大學環境工程研究所,(2001)。
50. 梁志鋒,「受體模式CMB與PMF之比較與驗證」,碩士論文,國立中興大學環境工程研究所,(2006)。
51. 王景良,「中部空品區污染源逸散粉塵的組成分析。」,碩士論文,國立中興大學環境工程研究所,(1999)。
52. 翁國豪,「生質燃燒氣膠長程傳輸與高山雲霧間隙氣膠特性之研究。」,碩士論文,國立中央大學環境工程研究所,(2007)。