| 研究生: |
黃垎禎 Huang, Ke-Zhen |
|---|---|
| 論文名稱: |
ISUAL大氣暉光影像之三維重建 Three-dimensional Reconstruction of ISUAL Airglow Images |
| 指導教授: |
談永頤
Tam, Wing-Yee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 電離層 、630.0奈米波段大氣暉光 、高空大氣閃電影像儀 |
| 外文關鍵詞: | Ionosphere, 630.0 nm nightglow, ISUAL |
| 相關次數: | 點閱:144 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用的大氣暉光觀測資料來自酬載於福衛二號(FORMOSAT-2)之高空大氣閃電影像儀(Imager of Sprites and Upper Atmospheric Lightning, ISUAL)拍攝夜間中低緯度地區。資料為2006年至2008年大氣暉光的影像及各項資訊,其中包含630.0奈米波段之大氣暉光。在拍攝的這兩年中,有些資料屬於太陽極小期,太陽活動處於平靜狀態,對於地球影響較小。針對大氣暉光異常增強現象,本研究利用IRI與MSISE模擬ISUAL的觀測630.0奈米大氣暉光的結果。並藉由630.0奈米大氣暉光的體積散射率公式以及空間中光子的積分,計算出光強度結果。並且比較630.0奈米大氣暉光在tangent point以及在空間中積分的影像結果,發現積分影像中大氣暉光異常強的中心高於tangent point的影像結果,至於為何大氣暉光異常增強的位置在觀測影像中偏低,這是由於ISUAL觀測大氣暉光的路徑由上往下積分的結果,並將積分後的結果放至積分路線中的最低點(Tangent point)。在地球夜側低緯度的地方存在著許多波段的大氣暉光,其中又以630.0 奈米的氧原子紅光最為容易觀測。同時也有許多因素會造成電離層的變化因而導致大氣暉光的改變,其中包含溫度以及中性風場。因此,我們利用電離層中粒子密度並依照觀測的過程加以模擬,再藉由觀測與模擬的結果探討電離層中的物理結構以及變化。
The observation of airglow used in this study was from Imager of Sprite-Upper Atmosphere Lightning (ISUAL) during 2006 – 2008. The instrument was the FORMOSAT-2 satellite and observed the region of middle and low latitudes at night. The data are presented in form of images of emission, including 630.0 nm airglow. At the nightside of the Earth, airglow with various frequencies exist at the low latitudes, among them, 630.0 nm is the most easily to be observed. Many factors affect the ionosphere and result in the change of the airglow, including temperature and neutral wind. For the enhancement of airglow, particle densities from the IRI and MSISE models are used in the research to find the volume emission rate of 630.0 nm airglow. By using the 630.0 nm volume emission rate and integrating the photons along various ray paths in space, we calculate the integrated intensity of the 630.0 nm airglow, mimicking the process of the ISUAL observation. We compare image results of the integrated intensity and emission rate at the tangent point. We find out the center of the enhancement of the airglow for integrated intensity is lower in altitude than that of the emission rate. The reason is that ISUAL observed the airglow downward from the satellite, and assumed that the integrated intensity corresponded to the tangent point, which had the smallest geocentric distance along a ray path.
Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, C.-C. Hsiao, A. B. Chen. and R.-R. Hsu, 2010: Midnight latitude-altitude distribution of 630 nm airglow in the Asian sector measured with FORMOSAT-2/ISUAL. J. Geophys. Res., 115, A09315.
Camp, C. D., and K. K. Tung, 2007: Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett., 34, L14703
Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, L. C. Lee, 2003: Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite. J. Atmos. Sol.-Terr. Phys., 65, 647-659.
Chiang, C. Y., T. F. Chang, S. W.-Y. Tam, T. Y. Huang, Alfred B.-C. Chen, H. T. Su, and R. R. Hsu, 2013: Global observations of the 630-nm Nightglow and Patterns of Brightness Measured by ISUAL. Terr. Atmos. Ocean. Sci., 24, 283-293.
Chiang, C. Y., S. W. T. Tam, and T. F. Chang, 2018: Variations of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight. Ann. Geophys., 36, 1471-1481.
Colerico, M. J. and M. Mendillo, 2002: The current of investigation regarding the thermospheric midnight temperature maximum (MTM). J. Atmos. Sol.-Terr. Phys., 64, 1361-1369.
Fesen, C. G., D. L. Hysell, J. M. Meriwether, M. Mendillo, B. G. Fejer, R.G. Roble, B. W. Reinisch, and M. A. Biondi, 2002: Modeling the low-latitude thermosphere and ionosphere. J. Atmos. Sol.-Terr. Phys., 64, 1337-1349.
Herrero, F. A., and Spencer, N. W., 1982: On the horizontal distribution of the equatorial thermospheric midnight temperature maximum and its seasonal variations, Geophys. Res. Lett., 9, 1179-1182.
Hyosub Kil, Robert DeMajistre, Larry J. Paxton, Yongliang Zhang, 2006: Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI. J. Atmos., Sol.-Terr. Phys., 68,1672-1681.
Kelley, M. C., and R. A. Heelis (1989), The Earth’s Ionosphere, Academic Press, San
Diego, USA
Niranjan, K., P. S. Brahmanandam, and B. Srivani, 2006: Signatures of equatorial midnight temperature maximum as observed from in situ and ground-based ionospheric measurements in the Indian sector. J. Geophys. Res., 111, A07309.
Rajesh, P. K., J. Y. Liu, C. Y. Chiang, A. B. Chen, W. S. Chen, H. T. Su, R. R. Hsu, C. H. Lin, M.-L. Hsu, J. H. Yee, and J. B. Nee, 2009: First results of the limb imaging of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightnings. J. Geophys. Res., 114, A10302.
Xiong, C., H. Lühr, M. Schmidt, M. Blossfeld, and S. Rudenko, 2018: An empirical model of the thermospheric mass density derived from CHAMP satellite. Ann. Geophys., 36, 1141-1152.
劉格瑋, 2009: Long term correlation study of observations between FORMOSAT- 2/ISUAL 6300Å airglow and FORMOSAT/GOX electron density, 國立成功大學物理學研究所碩士論文
鄭瑞億, 2016: The Observation and Simulation of 630.0 nm Nightglow in the solar Minimum, 國立成功大學太空與電漿科學研究所碩士論文