簡易檢索 / 詳目顯示

研究生: 溫恆旻
Wen, Heng-Min
論文名稱: 應用於氧化亞氮混合火箭之固體推進劑點火器開發
Development of Solid Propellant Igniter Applied in Nitrous Oxide Hybrid Rocket
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 62
中文關鍵詞: 噴焰式固體點火器氧化亞氮混合火箭混合火箭點火系統設計下游噴流熱傳
外文關鍵詞: solid propellant igniter, nitrous oxide hybrid rocket, procedures of ignition system in hybrid rocke, heat transfer of aft-end igniter
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,混合火箭逐漸受到重視,因為其安全性與結構簡易,許多民間公司均發展過,且具有作為上層火箭及軌道推進器的潛力。在性能上,混合火箭比固體火箭表現較好,藥柱設計上也比較安全;在整體結構上,混合火箭比液態火箭安全。總體而言,混合火箭從學校到商業公司均可以以低成本且高安全性為目標之推進系統作為發展。以氧化劑層面為考量,液態氧雖然具有最高比衝,但是其儲存與運送較難處理;氧化亞氮為較安全之氧化劑,可以在大氣環境下運作,因為具有高蒸氣壓的特性,所以不需要額外加壓設備,貫徹混合火箭之簡單性的優點。混合火箭雖然具有以上許多優點,但是其點火系統較其他兩者困難,因為其需要先把固態藥柱加熱產生燃氣,接下來氧化劑噴注後給予足夠點火能量才能完成點火步驟,所以點火系統的設計為整體混合火箭之主要關鍵設計。在過去點火器的文獻中,固體點火器具有短時間內釋放高能量之優勢,在上層火箭上可短時間內進行脫節點火程序,可以避免氣動力對火箭姿態的影響,在點火器的選擇中也以不影響氧化劑噴注與減輕重量為前提下,選擇以發動機下游點火之噴焰式固體點火器為本研究之點火系統。本研究首先發展出一套適用於學校實驗室之安全固體藥製作程序,分析出固體藥密度對固體藥燃燒速度影響重大,故經過改良發展與均勻度佳與高密度之製藥過程。接著以能量釋放率及能量分布為主要因素為考量去設計固體點火器,計算出無建壓與有建壓之固體點火器的能量釋放率分別為33.4%和48.7%,接著以溫度分布實驗分析計算與實驗的能量釋放率的差異,設計出兩種固體點火器的實驗能量釋放率分別為21.5%及20.7%,最終以實驗驗證其設計標準之可用性,本設計標準可作為混合火箭之點火系統設計標準,可用於未來混合火箭之發展,對於不同推力大小之推進系統點火器設計的參考。

    With the advantages of safety and simple structure, hybrid rocket has been widely used in the commercial companies and colleges recently. It also equips potential ability in upper-stage rocket and orbit thruster. Green propellants, such as hydrogen peroxide and nitrous oxide, has been more valued nowadays for the sake of environmental protection. Due to the characteristic of high vapor pressure in standard condition, we choose nitrous oxide to be oxidizer in hybrid rocket. Although sum of impressive merits in nitrous oxide hybrid rocket, designs of igniter become crucial steps during launch mission. Solid propellant igniter contains several advantages, like high energy density and low ignition delay, and ammonium perchlorate, which is one of solid propellants, attracts high performance in combustion. To design a solid propellant ignition system, it is crucial for ignition energy calculation and heat distribution estimation in hybrid rocket. Next, we evaluate the performance of solid propellants and calculate the total energy that solid propellants release by using chemical equilibrium application. And then, in order to verify whether the calculation of heat transfer fits the experiment of which, we plan to conduct grain surface temperature detective experiments. Finally, we find the range of total ignition energy in hybrid rocket and establish the procedures which apply in solid propellant igniter for hybrid rocket.

    摘要 I Extended Abstract III 誌謝 XIII 目錄 XV 表目錄 XVII 圖目錄 XVIII 符號 XX 第一章 緒論 1 1-1 前言 1 1-1-1 混合火箭的背景與發展 1 1-1-2 混合火箭的點火器 2 1-1-2-1 混合火箭點火特性 2 1-1-2-2 混合火箭點火系統 3 1-2 研究動機 3 1-3 文獻回顧 4 1-3-1 混合火箭點火條件 4 1-3-2 混合火箭藥柱表面熱傳模型 5 1-3-3 固體點火器點火步驟 6 1-3-4 固體點火器的發展與種類 6 1-4 研究目的 8 第二章 實驗設備與實驗方法 9 2-1 點火器設計 9 2-1-1 固體藥選用 9 2-1-2 固體藥能量計算 9 2-1-3 點火熱傳設計 10 2-2 實驗設備 13 2-2-1 Strand burner 13 2-2-2 固體點火器測試平台 13 2-2-3 藥柱表面溫度量測及點火測試平台, 13 2-3 實驗方法 14 2-3-1 固體藥製備 14 2-3-1-1 先期製程 14 2-3-1-2 改良製程 15 2-3-2 排酒精體積量測法 17 2-3-3 固體藥退縮率量測 18 2-3-4 大氣環境燃燒測試 18 2-3-5 固體點火器燃燒測試 18 2-3-6 藥柱表面溫度量測 19 2-3-7 混合火箭發動機點火測試 19 第三章 實驗結果與討論 20 3-1 點火藥密度測試結果 20 3-1-1 固體藥徑向密度 20 3-1-2 固體藥軸向密度 20 3-2 點火藥退縮率量測結果 21 3-2-1 固體藥條退縮率 21 3-2-2 固體藥柱退縮率 21 3-3 固體藥燃燒情形結果 22 3-3-1 大氣環境下燃燒觀察 22 3-3-2 固體點火器燃燒觀察 23 3-4 固體點火器對藥柱熱傳結果 23 3-5 混合火箭點火測試 24 第四章 結論 25 第五章 未來工作 26 參考文獻 27 附表 30 附圖 39

    [1] Sutton, G. P., & Biblarz, O.(2016), Rocket propulsion elements. John Wiley & Sons.
    [2] Kuo, K. K. & Chiaverini, M. J.(2007), Fundamentals of hybrid rocket combustion and propulsion. American Institute of Aeronautics and Astronautics.
    [3] Wernimont, E. J., Meyer, S. E., & Ventura, M. C.(1998), “Hybrid motor system with a consumable catalytic bed a composition of the catalytic bed and a method of using.” U.S. Patent No. 5,727,368. 17 March.
    [4] 莫嘉傑(2016), “預分解過氧化氫與HTPB/石蠟混合火箭之研發及測試”, 國立成功大學航空太空工程學系碩士論文.
    [5] Pfeil, M. A., Dennis, J. D., Son, S. F., & Heister, S. D.(2015), “Characterization of ethylenediamine bisborane as a hypergolic hybrid rocket fuel additive.” Journal of Propulsion and Power, Vol. 31, No. 1, pp. 365-372.
    [6] Zakirov, V., Wan, K., Shan, F., Zhang, H., & Li, L.(2006), “Restartable hybrid rocket motor using nitrous oxide.” 57th International Astronautical Congress.
    [7] Arves, J. P., Jones, H. S., Kline, K., Smith, K., Slack, T., & Bales, T.(1997), “Development of a N2O/HTPB hybrid rocket motor.” 33rd Joint Propulsion Conference and Exhibit.
    [8] Jens, E. T., Karp, A. C., Wiliams, K., Nakazono, B., & Rabinovitch, J.(2019), “Low pressure ignition testing of a hybrid smallsat motor.” AIAA Propulsion and Energy 2019 Forum, 19-22 August 2019, Indianapolis, IN. U.S.A.
    [9] Tian, H., Li, X., & Cai, G.(2015), “Ignition theory investigation and experimental research on hybrid rocket motor.” Aerospace Science and Technology Vol. 42, pp. 334-341.
    [10] Karabeyoglu, M. A.(1998), “Transient combustion in hybrid rockets.” PhD thesis, Stanford University, U.S.A.
    [11] Marxman, G. A.(1965), “Combustion in the turbulent boundary layer on a vaporizing surface.” 10th Symposium (International) on Combustion, Vol. 10, Combustion Institute, Pittsburgh, PA, pp. 1337-1349.
    [12] Wang, J. C.(1977), “Experimental study of some ignition problems of small solid propellant rockets.” 13th AIAA/SAE Propulsion Conference, 11-13 July 1977, Orlando, Florida, U.S.A.
    [13] Risha, G. A., Ulas, A., Kuo, K. K., Koch, D. E., Ludwig, C. P., & Glick, R. (1999), “Characterization of output mass and energy fluxes of a pyrotechnic igniter.” 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 20-24 June 1999, Los Angeles, California, U.S.A.
    [14] Santilli, M., & Fontana, A.(1994), “Ariane 5 MPS igniter subsystem:design approach and development phase results.” 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, Indianapolis, IN, U.S.A.
    [15] Carr, C. E., & Thomas, M. J.(1987), “Factors influencing BKNO3 igniter performance.” 23rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 30 June-2 July 1987, San Diego, California, U.S.A.
    [16] Bradford, J. N., Sunnyvale, & Jones, R. A.(1970), “Hybrid rocket motor ignition system.” U.S. Patent No. 3,518,828. 7 July.
    [17] Adams, D. M.(1967), “Igniter performance in solid-propellant rocket motors.” Journal of Spacecraft and Rockets, Vol. 4, No. 8, pp. 1024-1029.
    [18] Vesna, R., & Petric, M.(2005), “The effect of curing agents on solid composite rocket propellant characteristics.” Science-Technical Review, Vol. LV, No. 1, pp.46-50.
    [19] Zakirov, V., Sweeting, M., Goeman, V., & Lawrence, T.(2001), “Surrey research update on N2O catalytic decomposition for space applications.” 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 8-11 July 2001, Salt Lake City, Utah, U.S.A.
    [20] Chaturvedi, S., & Dave, P. N.(2015), “Solid propellants: AP/HTPB composite propellants.” Arabian Journal of Chemistry, Vol. 12, Issue 8, pp. 2061-2068, 2019.
    [21] 尹自賓(2008), “固體火箭發動機點火過程內流場數值研究”, 南京理工大學武器系統與運用工程學系碩士論文.
    [22] Carlson, L. W., Seader, J. D.(1966), “A study of heat transfer characteristics of hot-gas ignition.” 3rd Aerospace Sciences Meeting, 24-26 January 1966, New York, New York, U.S.A.
    [23] 郭敏謙(2013), “應用高能物質於混合火箭藥柱之研究”, 國立成功大學航空太空工程學系碩士論文.
    [24] 舶均股份有限公司網頁,奈米鋁粉(2011)。檢自http://www.tina.com.tw/?37,%E5%A5%88%E7%B1%B3%E9%8B%81%E7%B2%89 (Dec.15, 2019)
    [25] Randall, D.(2002), The Polyurethanes Book. Wiley.
    [26] 可英有限公司網頁,工程塑膠(2019)。檢自https://www.keying.com.tw/about-us.html (Nov. 16, 2019)

    無法下載圖示 校內:2025-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE