簡易檢索 / 詳目顯示

研究生: 陳冠志
Chen, Guan-Chih
論文名稱: 電漿輔助化學氣相沉積法在低溫下成長氧化鉬/二碲化鉬異質結構用於電解析氫反應
Heterostructure MoOx/MoTe2 nanosheet growth in low temperature via Plasma-enhanced Chemical Vapor Deposition for Electrical Hydrogen Evolution Reaction
指導教授: 陳雨澤
Chen, Yu-Ze
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 二碲化鉬化學氣相沉積法異質結構電漿析氫反應
外文關鍵詞: Molybdenum Ditelluride, chemical vapor deposition, Heterostructure, plasma, HER
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通過電化學水解的析氫反應(HER)被認為是最有效的製氫方式之一,而目前降低電催化劑的成本是實際應用中常被研究之主題。過渡金屬二硫化物(TMDCs)的相工程因其不同相的能帶而被作為電催化劑的研究。與 2H 相 TMDCs 不同,1T'相 TMDCs 由於
    其高導電性而提供更高的電荷轉移效率。本實驗中使用了電漿輔助化學氣相沉積法成功合成 1T'-MoTe2/MoOx 奈米結構。通過改變製程溫度、電將功率和氣體流量比,我們可以控制 1T'-MoTe2奈米結構的形貌。除此之外,電漿輔助沉積製成可以將製程溫度大幅降低至 300°C,且更進一步提高 1T'-MoTe2/MoOx 奈米結構在 HER 反應中的穩定性。且 1T'-MoTe2/MoOx的異質結構比純粹的氧化鉬基板提供了更多的活性位點,這也進一步提高了 HER 效率。本實驗藉由電漿的幫助下同時達成降低製程溫度、增強奈米結構穩定性與成長目標 1T'-MoTe2 等效果,也為未來層狀材料成長在金屬氧化物基板上帶來更多的發展性。

    Hydrogen evolution reaction (HER) via water splitting is considered as one of the most effective ways to generate hydrogen. Nowadays, lower cost of electrocatalyst is a mainstream research topic for practical application.Phase engineering of Transition metal dichalcogenides (TMDCs) are appealing in electrocatalysts because of their different electric bandgap in different phase. Instead of 2H-phase TMDCs, 1T’-phase of TMDCs provide more charge-transfer efficiency due to its high conductivity. In this work, 1T’-MoTe2/MoOx nanostructure was successfully synthesized by plasmaenhanced chemical vapor deposition method. By differing the processing temperature, plasma, and gas flow ratio we can control the morphology of 1T'-MoTe2 nanostructure. Besides, the plasma-assisted process can greatly decrease the processing temperature to 300°C and enhance the stability of
    1T’-MoTe2/MoOx nanostructure in HER. Moreover, the heterostructure of 1T’-MoTe2/MoOx provide more active sites than MoOx Substrate, which also improved the HER efficiency. In this work, plasma-enhanced method is used to reduce the synthesized temperature, growing targeted 1T’-MoTe2, and controlled the morphology in the meantime. This report shows us a promising way to the preparation of TMDCs in metal-oxide substrate for boosting hydrogen evolution reaction.

    致謝 I 摘要 II Extended abstract III 目錄 IX 表目錄 XI 圖目錄 XI Chapter 1 緒論 1 1.1 前言 1 1.2 研究動機 3 Chapter 2 文獻回顧 5 2.1 二維層狀材料 5 2.1.1 石墨烯 5 2.1.2 過渡金屬碳氮化物 (MXene) 6 2.1.3 過渡金屬硫屬化物 (TMDC) 8 2.2 二碲化鉬(MoTe2) 10 2.2.1 基本性質 10 2.2.2 製程方法 11 2.3 析氫反應 (Hydrogen Evolution Reaction) 17 2.3.1 酸性析氫反應 (HER in acidic solution) 18 2.3.2 鹼性析氫反應 (HER in alkaline solution) 19 2.3.3 析氫反應重要的參數 21 2.4 增加析氫反應的策略 26 2.4.1 增加導電度 26 2.4.2 摻雜離子 (Doping) 27 2.4.3 邊界工程與層狀結構 29 2.4.4 異質結構 30 Chapter 3 分析儀器與實驗手法 34 3.1 實驗藥品 34 3.2 MoOx/MoTe2 異質結構成長步驟 34 3.2.1 實驗流程圖 34 3.2.2 清洗基板與氧化鉬層形成 36 3.2.3 MoOx/MoTe2 異質結構 36 3.2.4 HER 反應測量 39 3.3 實驗儀器 39 3.3.1 真空碲化系統 39 3.3.2 場發射掃描式電子顯微鏡 (Field-emission scanning electron XIII microscope, FE-SEM) 40 3.3.3 拉曼光譜儀 (Raman spectrometer) 41 3.3.4 電化學工作站 41 Chapter 4 結果與討論 42 4.1 MoTe2/MoOx 基本性質討論 42 4.1.1 MoOx 基板與 Mo 基板碲化後形貌研究 42 4.1.2 Mo 基板與 MoOx 基板碲化後材料分析 45 4.2 電漿製程下對 MoTe2 -微結構與形貌探討 49 4.2.1 無電漿製程對氧化鉬基板碲化製程之影響 49 4.2.2 不同電漿功率對 MoTe2的表面形貌之影響 51 4.3 MoTe2 製程參數探討-製程氣流與壓力 53 4.3.1 不同製程氣流量的比例對 MoTe2 之微結構影響 53 4.3.2 不同製程壓力參數對 MoTe2 之微結構影響。 56 4.4 MoTe2 製程參數探討-製程溫度與時間 59 4.4.1 不同製程溫度對 MoTe2之微結構影響 59 4.4.2 不同製程時間對 MoTe2之微結構影響 61 4.5 MoTe2 之 HER 性能探討 64 4.5.1 探討不同電漿功率對 HER 的性能探討 64 4.5.2 探討不同製程氣流對 HER 的性能探討 66 4.5.3 探討不同製程溫度對 HER 的性能探討 68 4.5.4 探討不同成長時間對 HER 的性能探討 69 4.5.5 循環性能探討 70 Chapter 5 結論 75 Chapter 6 未來展望 77 參考資料 78

    1. Cheng, N.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T. K.; Liu, L. M.; Botton, G. A.; Sun, X., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.
    2. Wang, H.; Maiyalagan, T.; Wang, X., Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2 (5), 781-794.
    3. Jia, Y.; Zhang, L.; Du, A.; Gao, G.; Chen, J.; Yan, X.; Brown, C. L.; Yao, X., Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Adv. Mater. 2016, 28 (43), 9532-9538.
    4. Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A., Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1 (3), 589-594.
    5. Liu, N.; Kim, P.; Kim, J. H.; Ye, J. H.; Kim, S.; Lee, C. J., Large-Area Atomically Thin MoS2 Nanosheets Prepared Using Electrochemical Exfoliation. ACS Nano 2014, 8 (7), 6902-6910.
    6. Jian, C.; Cai, Q.; Hong, W.; Li, J.; Liu, W., Edge-Riched MoSe2 /MoO2 Hybrid Electrocatalyst for Efficient Hydrogen Evolution Reaction. Small 2018, 14 (13), e1703798.
    7. Hu, T.; Bian, K.; Tai, G.; Zeng, T.; Wang, X.; Huang, X.; Xiong, K.; Zhu, K., Oxidation-Sulfidation Approach for Vertically Growing MoS2 Nanofilms Catalysts on Molybdenum Foils as Efficient HER Catalysts. J. Phys. Chem. C 2016, 120 (45), 25843-25850.
    8. Chen, X.; Liu, G.; Zheng, W.; Feng, W.; Cao, W.; Hu, W.; Hu, P., Vertical 2D MoO2/MoSe2
    Core-Shell Nanosheet Arrays as High-Performance Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2016, 26 (46), 8537-8544.
    9. Nikam, R. D.; Lu, A. Y.; Sonawane, P. A.; Kumar, U. R.; Yadav, K.; Li, L. J.; Chen, Y. T., Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7 (41), 23328-35.
    10. Ruppert, C.; Aslan, O. B.; Heinz, T. F., Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano Lett. 2014, 14 (11), 6231-6236.
    11. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H., Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11 (6), 482-U144.
    12. Empante, T. A.; Zhou, Y.; Klee, V.; Nguyen, A. E.; Lu, I. H.; Valentin, M. D.; Alvillar, S. A. N.; Preciado, E.; Berges, A. J.; Merida, C. S.; Gomez, M.; Bobek, S.; Isarraraz, M.; Reed, E. J.; Bartels, L., Chemical Vapor Deposition Growth of Few Layer MoTe2 in the 2H, 1T' , and 1T Phases: Tunable Properties of MoTe2 Films. ACS Nano 2017, 11 (1), 900-905.
    13. Lu, D.; Ren, X.; Ren, L.; Xue, W.; Liu, S.; Liu, Y.; Chen, Q.; Qi, X.; Zhong, J., Direct Vapor Deposition Growth of 1T' MoTe2 on Carbon Cloth for Electrocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2019, 3 (4), 3212-3219.
    14. McGlynn, J. C.; Friskey, M.; Ganin, A. Y., Parameter optimisation for electrochemically activated MoTe2. Sustainable Energy & Fuels 2020, 4 (9), 4473-4477.
    15. Wang, B.; Zhang, Z.; Zhang, S.; Cao, Y.; Su, Y.; Liu, S.; Tang, W.; Yu, J.; Ou, Y.; Xie, S.; Li, J.; Ma, M., Surface excited MoO2 to master full water splitting. Electrochim. Acta 2020, 359.
    16. McGlynn, J. C.; Dankwort, T.; Kienle, L.; Bandeira, N. A. G.; Fraser, J. P.; Gibson, E. K.; Cascallana-Matias, I.; Kamaras, K.; Symes, M. D.; Miras, H. N.; Ganin, A. Y., The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 2019, 10 (1), 4916.
    17. Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S., Efficient Water Oxidation Using Nanostructured alpha-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society 2014, 136 (19), 7077-7084.
    18. Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R., Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption. Journal of the American Chemical Society 2018, 140 (2), 610-617.
    19. He, Y.; Boubeche, M.; Zhou, Y. C.; Yan, D.; Zeng, L. Y.; Wang, X. P.; Yan, K.; Luo, H. X., Topologically nontrivial 1T'-MoTe2 as highly efficient hydrogen evolution electrocatalyst. Journal of Physics-Materials 2021, 4 (1).
    20. Grzeszczyk, M.; Golasa, K.; Molas, M. R.; Nogajewski, K.; Zinkiewicz, M.; Potemski, M.; Wysmolek, A.; Babinski, A., Raman scattering from the bulk inactive out-of-plane B2g(1) mode in few-layer MoTe2. Sci. Rep. 2018, 8.
    21. Liu, M.; Wang, Z. J.; Liu, J. X.; Wei, G. J.; Du, J.; Li, Y. P.; An, C. H.; Zhang, J., Synthesis of few-layer 1T '-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors. J Mater Chem A 2017, 5 (3), 1035-1042.
    22. Zazpe, R.; Sopha, H.; Charvot, J.; Krumpolec, R.; Rodriguez-Pereira, J.; Michalička, J.; Mistrík, J.; Bača, D.; Motola, M.; Bureš, F.; Macak, J. M., 2D MoTe2 nanosheets by atomic layer deposition: Excellent photo- electrocatalytic properties. Appl. Mater. Today 2021, 23.
    23. Yang, S. J.; Cai, H.; Chen, B.; Ko, C.; Ozcelik, V. O.; Ogletree, D. F.; White, C. E.; Shen, Y. X.; Tongay, S., Environmental stability of 2D anisotropic tellurium containing nanomaterials: anisotropic to isotropic transition. Nanoscale 2017, 9 (34), 12288-12294.
    24. Lee, Y.; Ling, N.; Kim, D.; Zhao, M.; Eshete, Y. A.; Kim, E.; Cho, S.; Yang, H., Heterophase Boundary for Active Hydrogen Evolution in MoTe2. Adv. Funct. Mater. 2021.
    25. Qiao, H.; Huang, Z. Y.; Liu, S. Q.; Liu, Y. D.; Li, J.; Qi, X., Liquid-exfoliated molybdenum telluride nanosheets with superior electrocatalytic hydrogen evolution performances. Ceram. Int. 2018, 44 (17), 21205-21209.
    26. Seok, J.; Lee, J. H.; Cho, S.; Ji, B.; Kim, H. W.; Kwon, M.; Kim, D.; Kim, Y. M.; Oh, S. H.; Kim, S. W.; Lee, Y. H.; Son, Y. W.; Yang, H., Active hydrogen evolution through lattice distortion in metallic MoTe2. 2d Mater 2017, 4 (2).
    27. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K., Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127 (15), 5308-5309.
    28. Shinde, P. V.; Mane, P.; Late, D. J.; Chakraborty, B.; Rout, C. S., Promising 2D/2D MoTe2/Ti3C2Tx Hybrid Materials for Boosted Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2021, 4 (10), 11886-11897.
    29. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010, 22 (35), 3906-24.
    30. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nat. 2005, 438 (7065), 197-200.
    31. Hantanasirisakul, K.; Gogotsi, Y., Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv. Mater. 2018, 30 (52), e1804779.
    32. Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T., Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016, 26 (23), 4162-4168.
    33. Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A., Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2 (12), 9.
    34. Li, R.; Zhang, L.; Shi, L.; Wang, P., MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano 2017, 11 (4), 3752-3759.
    35. Intikhab, S.; Natu, V.; Li, J.; Li, Y. W.; Tao, Q. Z.; Rosen, J.; Barsoum, M. W.; Snyder, J., Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes. J. Catal. 2019, 371, 325-332.
    36. Handoko, A. D.; Fredrickson, K. D.; Anasori, B.; Convey, K. W.; Johnson, L. R.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W., Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Appl. Energy Mater. 2018, 1 (1), 173-180.
    37. Geng, D. C.; Zhao, X. X.; Chen, Z. X.; Sun, W. W.; Fu, W.; Chen, J. Y.; Liu, W.; Zhou, W.; Loh, K. P., Direct Synthesis of Large-Area 2D Mo2C on In Situ Grown Graphene. Adv. Mater. 2017, 29 (35), 8.
    38. Wang, M.; Zhang, L.; He, Y.; Zhu, H., Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J Mater Chem A 2021, 9 (9), 5320-5363.
    39. Chia, X. Y.; Eng, A. Y. S.; Ambrosi, A.; Tan, S. M.; Pumera, M., Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chem. Rev. 2015, 115 (21), 11941-11966.
    40. Yu, Y. Y.; Wang, G.; Tan, Y.; Wu, N. N.; Zhang, X. A.; Qin, S. Q., Phase-Controlled Growth of One-Dimensional Mo6Te6 Nanowires and Two-Dimensional MoTe2 Ultrathin Films Heterostructures. Nano Lett. 2018, 18 (2), 675-681.
    41. Naylor, C. H.; Parkin, W. M.; Ping, J. L.; Gao, Z. L.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndic, M.; Kikkawa, J. M.; Johnson, A. T. C., Monolayer Single-Crystal 1T '-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. Nano Lett. 2016, 16 (7), 4297-4304.
    42. Sung, J. H.; Heo, H.; Si, S.; Kim, Y. H.; Noh, H. R.; Song, K.; Kim, J.; Lee, C. S.; Seo, S. Y.; Kim, D. H.; Kim, H. K.; Yeom, H. W.; Kim, T. H.; Choi, S. Y.; Kim, J. S.; Jo, M. H., Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 2017, 12 (11), 1064-+.
    43. Sankar, R.; Rao, G. N.; Muthuselvam, I. P.; Butler, C.; Kumar, N.; Murugan, G. S.; Shekhar, C.; Chang, T. R.; Wen, C. Y.; Chen, C. W.; Lee, W. L.; Lin, M. T.; Jeng, H. T.; Felser, C.; Chou, F. C., Polymorphic Layered MoTe2 from Semiconductor, Topological Insulator, to Weyl Semimetal. Chem. Mater. 2017, 29 (2), 699-707.
    44. Wang, X. J.; Shang, J.; Zhu, M. J.; Zhou, X.; Hao, R.; Sun, L. N.; Xu, H.; Zheng, J. B.; Lei, X. F.; Li, C.; Kou, L. Z.; Feng, Q. L., Controlled growth of large-scale uniform 1T ' MoTe2 crystals with tunable thickness and their photodetector applications. Nanoscale Horiz. 2020, 5 (6), 954-959.
    45. Deng, Y.; Zhao, X. X.; Zhu, C.; Li, P. L.; Duan, R. H.; Liu, G. T.; Liu, Z., MoTe2: Semiconductor or Semimetal? ACS Nano 2021, 15 (8), 12465-12474.
    46. Gao, B.; Du, X.; Zhao, Y.; Seok Cheon, W.; Ding, S.; Xiao, C.; Song, Z.; Won Jang, H., Electron strain-driven phase transformation in transition-metal-co doped MoTe2 for electrocatalytic hydrogen evolution. Chem. Eng. J. 2021.
    47. Jan-Otto Carlsson, P. M. M., Handbook of Deposition Technologies for Films and Coatings (Third Edition). 2010.
    48. Naylor, C. H.; Parkin, W. M.; Ping, J.; Gao, Z.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndic, M.; Kikkawa, J. M.; Johnson, A. T. C., Monolayer Single-Crystal 1T '-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. Nano Lett. 2016, 16 (7), 4297-4304.
    49. Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; Ping, J. L.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R.; Johnson, A. T. C., Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6.
    50. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Sci. 2004, 306 (5696), 666-669.
    51. Cheon, Y.; Lim, S. Y.; Kim, K.; Cheong, H., Structural Phase Transition and Interlayer Coupling in Few-Layer 1T' and Td MoTe2. ACS Nano 2021, 15 (2), 2962-2970.
    52. Backes, C.; Hanlon, D.; Szydlowska, B. M.; Harvey, A.; Smith, R. J.; Higgins, T. M.; Coleman, J. N., Preparation of Liquid-exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. JoVE. 2016, (118).
    53. Mao, D.; Du, B. B.; Yang, D. X.; Zhang, S. L.; Wang, Y. D.; Zhang, W. D.; She, X. Y.; Cheng, H. C.; Zeng, H. B.; Zhao, J. L., Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. Small 2016, 12 (11), 1489-1497.
    54. Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N., Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano 2012, 6 (4), 3468-3480.
    55. Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H. L.; Moshfegh, A. Z., Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3 (2), 90-204.
    56. Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P., Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28 (43).
    57. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120 (2), 851-918.
    58. E., G., Physical Electrochemistry: Fundamentals, Techniques and Applications. Wiley-VCH Verlag GmbH & Co.: Weinheim, 2011.
    59. Jiao, Y.; Zheng, Y.; Jaroniec, M. T.; Qiao, S. Z., Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44 (8), 2060-2086.
    60. Zou, X. X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44 (15), 5148-5180.
    61. Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y., Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Adv. Mater. 2019, 31 (2).
    62. Fletcher, S., Tafel slopes from first principles. J. Solid State Electrochem. 2009, 13, 537-549.
    63. Potter, J. O. M. B. a. E. C., The Mechanism of the Cathodic Hydrogen Evolution Reaction. J. Electrochem. Soc. 1952, 99, 169-186.
    64. Vrubel, H.; Moehl, T.; Gratzel, M.; Hu, X. L., Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. ChemComm 2013, 49 (79), 8985-8987.
    65. Lin, D. H.; Lasia, A., Electrochemical impedance study of the kinetics of hydrogen evolution at a rough palladium electrode in acidic solution. J. Electroanal. Chem 2017, 785, 190-195.
    66. Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y., Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Adv. Energy Mater. 2018, 8 (19).
    67. Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A., Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2014, 136 (40), 14121-14127.
    68. Liu, Z. P.; Zhao, L.; Liu, Y. H.; Gao, Z. C.; Yuan, S. S.; Li, X. T.; Li, N.; Miao, S. D., Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Appl. Catal., B 2019, 246, 296-302.
    69. Eftekhari, A., Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J Mater Chem A 2017, 5 (35), 18299-18325.
    70. Srivastava, A. M. a. S. K., Sulphur edge and vacancy assisted nitrogen–phosphorus co-doped exfoliated tungsten disulfide: a superior electrocatalyst for hydrogen evolution reaction. J Mater Chem A 2018, 6 (40), 19712-19726.
    71. Shifa, T. A.; Wang, F.; Liu, K.; Xu, K.; Wang, Z.; Zhan, X.; Jiang, C.; He, J., Engineering the Electronic Structure of 2D WS2 Nanosheets Using Co Incorporation as CoxW(1- x )S2 for Conspicuously Enhanced Hydrogen Generation. Small 2016, 12 (28), 3802-9.
    72. Zhang, N.; Lei, J.; Xie, J.; Huang, H.; Yu, Y., MoS2/Ni3S2 nanorod arrays well-aligned on Ni foam: a 3D hierarchical efficient bifunctional catalytic electrode for overall water splitting. RSC Adv. 2017, 7 (73), 46286-46296.
    73. Zhang, J.; Liu, S.; Liang, H.; Dong, R.; Feng, X., Hierarchical Transition-Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2015, 27 (45), 7426-31.
    74. Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M., Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26 (48), 8163-8.
    75. Kang, J. S.; Kim, J.; Lee, M. J.; Son, Y. J.; Chung, D. Y.; Park, S.; Jeong, J.; Yoo, J. M.; Shin, H.; Choe, H.; Park, H. S.; Sung, Y. E., Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction. Adv. Sci. 2018, 5 (1).
    76. Ray, J.; Chaudhuri, T. K., Growth and structural properties of Molybdenum thin films deposited by DC sputtering. J. Optoelectron. Adv. Mater. 2015, 17 (5-6), 634-639.
    77. Camacho-Lopez, M. A.; Escobar-Alarcon, L.; Picquart, M.; Arroyo, R.; Cordoba, G.; Haro-Poniatowski, E., Micro-Raman study of the m-MoO2 to alpha-MoO3 transformation induced by cw-laser irradiation. Opt. Mater. 2011, 33 (3), 480-484.
    78. Spevack, P. A.; McIntyre, N. S., Thermal reduction of MoO3. J. Phys. Chem. 1992, 96 (22), 9029-9035.
    79. Jegal, J. P.; Kim, H. K.; Kim, J. S.; Kim, K. B., One-pot synthesis of mixed-valence MoO(x) on carbon nanotube as an anode material for lithium ion batteries. J. Electroceram. 2013, 31 (1-2), 218-223.
    80. Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J.; Kim, Y.; Lee, C.; Kim, T., Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition. Adv. Mater. 2015, 27 (35), 5223-5229.
    81. Zhang, X.; Jiang, J. Z.; Suleiman, A. A.; Jin, B.; Hu, X. Z.; Zhou, X.; Zhai, T. Y., Hydrogen-Assisted Growth of Ultrathin Te Flakes with Giant Gate-Dependent Photoresponse. Adv. Funct. Mater. 2019, 29 (49).
    82. Song, Q. J.; Wang, H. F.; Pan, X. C.; Xu, X. L.; Wang, Y. L.; Li, Y. P.; Song, F. Q.; Wan, X. G.; Ye, Y.; Dai, L., Anomalous in-plane anisotropic Raman response of monoclinic semimetal 1T '-MoTe2. Sci. Rep. 2017, 7.
    83. McGlynn, J. C.; Cascallana-Matias, I.; Fraser, J. P.; Roger, I.; McAllister, J.; Miras, H. N.; Symes, M. D.; Ganin, A. Y., Molybdenum Ditelluride Rendered into an Efficient and Stable Electrocatalyst for the Hydrogen Evolution Reaction by Polymorphic Control. Energy Technol. 2018, 6 (2), 345-350.
    84. Xie, X.; Yu, R.; Xue, N.; Yousaf, A. B.; Du, H.; Liang, K.; Jiang, N.; Xu, A.-W., P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. J Mater Chem A 2016, 4 (5), 1647-1652.

    無法下載圖示 校內:2027-08-19公開
    校外:2027-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE