| 研究生: |
陳冠志 Chen, Guan-Chih |
|---|---|
| 論文名稱: |
電漿輔助化學氣相沉積法在低溫下成長氧化鉬/二碲化鉬異質結構用於電解析氫反應 Heterostructure MoOx/MoTe2 nanosheet growth in low temperature via Plasma-enhanced Chemical Vapor Deposition for Electrical Hydrogen Evolution Reaction |
| 指導教授: |
陳雨澤
Chen, Yu-Ze |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 二碲化鉬 、化學氣相沉積法 、異質結構 、電漿 、析氫反應 |
| 外文關鍵詞: | Molybdenum Ditelluride, chemical vapor deposition, Heterostructure, plasma, HER |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
通過電化學水解的析氫反應(HER)被認為是最有效的製氫方式之一,而目前降低電催化劑的成本是實際應用中常被研究之主題。過渡金屬二硫化物(TMDCs)的相工程因其不同相的能帶而被作為電催化劑的研究。與 2H 相 TMDCs 不同,1T'相 TMDCs 由於
其高導電性而提供更高的電荷轉移效率。本實驗中使用了電漿輔助化學氣相沉積法成功合成 1T'-MoTe2/MoOx 奈米結構。通過改變製程溫度、電將功率和氣體流量比,我們可以控制 1T'-MoTe2奈米結構的形貌。除此之外,電漿輔助沉積製成可以將製程溫度大幅降低至 300°C,且更進一步提高 1T'-MoTe2/MoOx 奈米結構在 HER 反應中的穩定性。且 1T'-MoTe2/MoOx的異質結構比純粹的氧化鉬基板提供了更多的活性位點,這也進一步提高了 HER 效率。本實驗藉由電漿的幫助下同時達成降低製程溫度、增強奈米結構穩定性與成長目標 1T'-MoTe2 等效果,也為未來層狀材料成長在金屬氧化物基板上帶來更多的發展性。
Hydrogen evolution reaction (HER) via water splitting is considered as one of the most effective ways to generate hydrogen. Nowadays, lower cost of electrocatalyst is a mainstream research topic for practical application.Phase engineering of Transition metal dichalcogenides (TMDCs) are appealing in electrocatalysts because of their different electric bandgap in different phase. Instead of 2H-phase TMDCs, 1T’-phase of TMDCs provide more charge-transfer efficiency due to its high conductivity. In this work, 1T’-MoTe2/MoOx nanostructure was successfully synthesized by plasmaenhanced chemical vapor deposition method. By differing the processing temperature, plasma, and gas flow ratio we can control the morphology of 1T'-MoTe2 nanostructure. Besides, the plasma-assisted process can greatly decrease the processing temperature to 300°C and enhance the stability of
1T’-MoTe2/MoOx nanostructure in HER. Moreover, the heterostructure of 1T’-MoTe2/MoOx provide more active sites than MoOx Substrate, which also improved the HER efficiency. In this work, plasma-enhanced method is used to reduce the synthesized temperature, growing targeted 1T’-MoTe2, and controlled the morphology in the meantime. This report shows us a promising way to the preparation of TMDCs in metal-oxide substrate for boosting hydrogen evolution reaction.
1. Cheng, N.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T. K.; Liu, L. M.; Botton, G. A.; Sun, X., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.
2. Wang, H.; Maiyalagan, T.; Wang, X., Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2 (5), 781-794.
3. Jia, Y.; Zhang, L.; Du, A.; Gao, G.; Chen, J.; Yan, X.; Brown, C. L.; Yao, X., Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Adv. Mater. 2016, 28 (43), 9532-9538.
4. Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A., Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1 (3), 589-594.
5. Liu, N.; Kim, P.; Kim, J. H.; Ye, J. H.; Kim, S.; Lee, C. J., Large-Area Atomically Thin MoS2 Nanosheets Prepared Using Electrochemical Exfoliation. ACS Nano 2014, 8 (7), 6902-6910.
6. Jian, C.; Cai, Q.; Hong, W.; Li, J.; Liu, W., Edge-Riched MoSe2 /MoO2 Hybrid Electrocatalyst for Efficient Hydrogen Evolution Reaction. Small 2018, 14 (13), e1703798.
7. Hu, T.; Bian, K.; Tai, G.; Zeng, T.; Wang, X.; Huang, X.; Xiong, K.; Zhu, K., Oxidation-Sulfidation Approach for Vertically Growing MoS2 Nanofilms Catalysts on Molybdenum Foils as Efficient HER Catalysts. J. Phys. Chem. C 2016, 120 (45), 25843-25850.
8. Chen, X.; Liu, G.; Zheng, W.; Feng, W.; Cao, W.; Hu, W.; Hu, P., Vertical 2D MoO2/MoSe2
Core-Shell Nanosheet Arrays as High-Performance Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2016, 26 (46), 8537-8544.
9. Nikam, R. D.; Lu, A. Y.; Sonawane, P. A.; Kumar, U. R.; Yadav, K.; Li, L. J.; Chen, Y. T., Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7 (41), 23328-35.
10. Ruppert, C.; Aslan, O. B.; Heinz, T. F., Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano Lett. 2014, 14 (11), 6231-6236.
11. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H., Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11 (6), 482-U144.
12. Empante, T. A.; Zhou, Y.; Klee, V.; Nguyen, A. E.; Lu, I. H.; Valentin, M. D.; Alvillar, S. A. N.; Preciado, E.; Berges, A. J.; Merida, C. S.; Gomez, M.; Bobek, S.; Isarraraz, M.; Reed, E. J.; Bartels, L., Chemical Vapor Deposition Growth of Few Layer MoTe2 in the 2H, 1T' , and 1T Phases: Tunable Properties of MoTe2 Films. ACS Nano 2017, 11 (1), 900-905.
13. Lu, D.; Ren, X.; Ren, L.; Xue, W.; Liu, S.; Liu, Y.; Chen, Q.; Qi, X.; Zhong, J., Direct Vapor Deposition Growth of 1T' MoTe2 on Carbon Cloth for Electrocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2019, 3 (4), 3212-3219.
14. McGlynn, J. C.; Friskey, M.; Ganin, A. Y., Parameter optimisation for electrochemically activated MoTe2. Sustainable Energy & Fuels 2020, 4 (9), 4473-4477.
15. Wang, B.; Zhang, Z.; Zhang, S.; Cao, Y.; Su, Y.; Liu, S.; Tang, W.; Yu, J.; Ou, Y.; Xie, S.; Li, J.; Ma, M., Surface excited MoO2 to master full water splitting. Electrochim. Acta 2020, 359.
16. McGlynn, J. C.; Dankwort, T.; Kienle, L.; Bandeira, N. A. G.; Fraser, J. P.; Gibson, E. K.; Cascallana-Matias, I.; Kamaras, K.; Symes, M. D.; Miras, H. N.; Ganin, A. Y., The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 2019, 10 (1), 4916.
17. Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S., Efficient Water Oxidation Using Nanostructured alpha-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society 2014, 136 (19), 7077-7084.
18. Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R., Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption. Journal of the American Chemical Society 2018, 140 (2), 610-617.
19. He, Y.; Boubeche, M.; Zhou, Y. C.; Yan, D.; Zeng, L. Y.; Wang, X. P.; Yan, K.; Luo, H. X., Topologically nontrivial 1T'-MoTe2 as highly efficient hydrogen evolution electrocatalyst. Journal of Physics-Materials 2021, 4 (1).
20. Grzeszczyk, M.; Golasa, K.; Molas, M. R.; Nogajewski, K.; Zinkiewicz, M.; Potemski, M.; Wysmolek, A.; Babinski, A., Raman scattering from the bulk inactive out-of-plane B2g(1) mode in few-layer MoTe2. Sci. Rep. 2018, 8.
21. Liu, M.; Wang, Z. J.; Liu, J. X.; Wei, G. J.; Du, J.; Li, Y. P.; An, C. H.; Zhang, J., Synthesis of few-layer 1T '-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors. J Mater Chem A 2017, 5 (3), 1035-1042.
22. Zazpe, R.; Sopha, H.; Charvot, J.; Krumpolec, R.; Rodriguez-Pereira, J.; Michalička, J.; Mistrík, J.; Bača, D.; Motola, M.; Bureš, F.; Macak, J. M., 2D MoTe2 nanosheets by atomic layer deposition: Excellent photo- electrocatalytic properties. Appl. Mater. Today 2021, 23.
23. Yang, S. J.; Cai, H.; Chen, B.; Ko, C.; Ozcelik, V. O.; Ogletree, D. F.; White, C. E.; Shen, Y. X.; Tongay, S., Environmental stability of 2D anisotropic tellurium containing nanomaterials: anisotropic to isotropic transition. Nanoscale 2017, 9 (34), 12288-12294.
24. Lee, Y.; Ling, N.; Kim, D.; Zhao, M.; Eshete, Y. A.; Kim, E.; Cho, S.; Yang, H., Heterophase Boundary for Active Hydrogen Evolution in MoTe2. Adv. Funct. Mater. 2021.
25. Qiao, H.; Huang, Z. Y.; Liu, S. Q.; Liu, Y. D.; Li, J.; Qi, X., Liquid-exfoliated molybdenum telluride nanosheets with superior electrocatalytic hydrogen evolution performances. Ceram. Int. 2018, 44 (17), 21205-21209.
26. Seok, J.; Lee, J. H.; Cho, S.; Ji, B.; Kim, H. W.; Kwon, M.; Kim, D.; Kim, Y. M.; Oh, S. H.; Kim, S. W.; Lee, Y. H.; Son, Y. W.; Yang, H., Active hydrogen evolution through lattice distortion in metallic MoTe2. 2d Mater 2017, 4 (2).
27. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K., Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127 (15), 5308-5309.
28. Shinde, P. V.; Mane, P.; Late, D. J.; Chakraborty, B.; Rout, C. S., Promising 2D/2D MoTe2/Ti3C2Tx Hybrid Materials for Boosted Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2021, 4 (10), 11886-11897.
29. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010, 22 (35), 3906-24.
30. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nat. 2005, 438 (7065), 197-200.
31. Hantanasirisakul, K.; Gogotsi, Y., Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv. Mater. 2018, 30 (52), e1804779.
32. Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T., Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016, 26 (23), 4162-4168.
33. Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A., Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2 (12), 9.
34. Li, R.; Zhang, L.; Shi, L.; Wang, P., MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano 2017, 11 (4), 3752-3759.
35. Intikhab, S.; Natu, V.; Li, J.; Li, Y. W.; Tao, Q. Z.; Rosen, J.; Barsoum, M. W.; Snyder, J., Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes. J. Catal. 2019, 371, 325-332.
36. Handoko, A. D.; Fredrickson, K. D.; Anasori, B.; Convey, K. W.; Johnson, L. R.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W., Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Appl. Energy Mater. 2018, 1 (1), 173-180.
37. Geng, D. C.; Zhao, X. X.; Chen, Z. X.; Sun, W. W.; Fu, W.; Chen, J. Y.; Liu, W.; Zhou, W.; Loh, K. P., Direct Synthesis of Large-Area 2D Mo2C on In Situ Grown Graphene. Adv. Mater. 2017, 29 (35), 8.
38. Wang, M.; Zhang, L.; He, Y.; Zhu, H., Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J Mater Chem A 2021, 9 (9), 5320-5363.
39. Chia, X. Y.; Eng, A. Y. S.; Ambrosi, A.; Tan, S. M.; Pumera, M., Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chem. Rev. 2015, 115 (21), 11941-11966.
40. Yu, Y. Y.; Wang, G.; Tan, Y.; Wu, N. N.; Zhang, X. A.; Qin, S. Q., Phase-Controlled Growth of One-Dimensional Mo6Te6 Nanowires and Two-Dimensional MoTe2 Ultrathin Films Heterostructures. Nano Lett. 2018, 18 (2), 675-681.
41. Naylor, C. H.; Parkin, W. M.; Ping, J. L.; Gao, Z. L.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndic, M.; Kikkawa, J. M.; Johnson, A. T. C., Monolayer Single-Crystal 1T '-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. Nano Lett. 2016, 16 (7), 4297-4304.
42. Sung, J. H.; Heo, H.; Si, S.; Kim, Y. H.; Noh, H. R.; Song, K.; Kim, J.; Lee, C. S.; Seo, S. Y.; Kim, D. H.; Kim, H. K.; Yeom, H. W.; Kim, T. H.; Choi, S. Y.; Kim, J. S.; Jo, M. H., Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 2017, 12 (11), 1064-+.
43. Sankar, R.; Rao, G. N.; Muthuselvam, I. P.; Butler, C.; Kumar, N.; Murugan, G. S.; Shekhar, C.; Chang, T. R.; Wen, C. Y.; Chen, C. W.; Lee, W. L.; Lin, M. T.; Jeng, H. T.; Felser, C.; Chou, F. C., Polymorphic Layered MoTe2 from Semiconductor, Topological Insulator, to Weyl Semimetal. Chem. Mater. 2017, 29 (2), 699-707.
44. Wang, X. J.; Shang, J.; Zhu, M. J.; Zhou, X.; Hao, R.; Sun, L. N.; Xu, H.; Zheng, J. B.; Lei, X. F.; Li, C.; Kou, L. Z.; Feng, Q. L., Controlled growth of large-scale uniform 1T ' MoTe2 crystals with tunable thickness and their photodetector applications. Nanoscale Horiz. 2020, 5 (6), 954-959.
45. Deng, Y.; Zhao, X. X.; Zhu, C.; Li, P. L.; Duan, R. H.; Liu, G. T.; Liu, Z., MoTe2: Semiconductor or Semimetal? ACS Nano 2021, 15 (8), 12465-12474.
46. Gao, B.; Du, X.; Zhao, Y.; Seok Cheon, W.; Ding, S.; Xiao, C.; Song, Z.; Won Jang, H., Electron strain-driven phase transformation in transition-metal-co doped MoTe2 for electrocatalytic hydrogen evolution. Chem. Eng. J. 2021.
47. Jan-Otto Carlsson, P. M. M., Handbook of Deposition Technologies for Films and Coatings (Third Edition). 2010.
48. Naylor, C. H.; Parkin, W. M.; Ping, J.; Gao, Z.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndic, M.; Kikkawa, J. M.; Johnson, A. T. C., Monolayer Single-Crystal 1T '-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. Nano Lett. 2016, 16 (7), 4297-4304.
49. Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; Ping, J. L.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R.; Johnson, A. T. C., Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6.
50. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Sci. 2004, 306 (5696), 666-669.
51. Cheon, Y.; Lim, S. Y.; Kim, K.; Cheong, H., Structural Phase Transition and Interlayer Coupling in Few-Layer 1T' and Td MoTe2. ACS Nano 2021, 15 (2), 2962-2970.
52. Backes, C.; Hanlon, D.; Szydlowska, B. M.; Harvey, A.; Smith, R. J.; Higgins, T. M.; Coleman, J. N., Preparation of Liquid-exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. JoVE. 2016, (118).
53. Mao, D.; Du, B. B.; Yang, D. X.; Zhang, S. L.; Wang, Y. D.; Zhang, W. D.; She, X. Y.; Cheng, H. C.; Zeng, H. B.; Zhao, J. L., Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. Small 2016, 12 (11), 1489-1497.
54. Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N., Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano 2012, 6 (4), 3468-3480.
55. Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H. L.; Moshfegh, A. Z., Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 2018, 3 (2), 90-204.
56. Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P., Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28 (43).
57. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120 (2), 851-918.
58. E., G., Physical Electrochemistry: Fundamentals, Techniques and Applications. Wiley-VCH Verlag GmbH & Co.: Weinheim, 2011.
59. Jiao, Y.; Zheng, Y.; Jaroniec, M. T.; Qiao, S. Z., Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44 (8), 2060-2086.
60. Zou, X. X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44 (15), 5148-5180.
61. Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y., Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Adv. Mater. 2019, 31 (2).
62. Fletcher, S., Tafel slopes from first principles. J. Solid State Electrochem. 2009, 13, 537-549.
63. Potter, J. O. M. B. a. E. C., The Mechanism of the Cathodic Hydrogen Evolution Reaction. J. Electrochem. Soc. 1952, 99, 169-186.
64. Vrubel, H.; Moehl, T.; Gratzel, M.; Hu, X. L., Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. ChemComm 2013, 49 (79), 8985-8987.
65. Lin, D. H.; Lasia, A., Electrochemical impedance study of the kinetics of hydrogen evolution at a rough palladium electrode in acidic solution. J. Electroanal. Chem 2017, 785, 190-195.
66. Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y., Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Adv. Energy Mater. 2018, 8 (19).
67. Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A., Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2014, 136 (40), 14121-14127.
68. Liu, Z. P.; Zhao, L.; Liu, Y. H.; Gao, Z. C.; Yuan, S. S.; Li, X. T.; Li, N.; Miao, S. D., Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Appl. Catal., B 2019, 246, 296-302.
69. Eftekhari, A., Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J Mater Chem A 2017, 5 (35), 18299-18325.
70. Srivastava, A. M. a. S. K., Sulphur edge and vacancy assisted nitrogen–phosphorus co-doped exfoliated tungsten disulfide: a superior electrocatalyst for hydrogen evolution reaction. J Mater Chem A 2018, 6 (40), 19712-19726.
71. Shifa, T. A.; Wang, F.; Liu, K.; Xu, K.; Wang, Z.; Zhan, X.; Jiang, C.; He, J., Engineering the Electronic Structure of 2D WS2 Nanosheets Using Co Incorporation as CoxW(1- x )S2 for Conspicuously Enhanced Hydrogen Generation. Small 2016, 12 (28), 3802-9.
72. Zhang, N.; Lei, J.; Xie, J.; Huang, H.; Yu, Y., MoS2/Ni3S2 nanorod arrays well-aligned on Ni foam: a 3D hierarchical efficient bifunctional catalytic electrode for overall water splitting. RSC Adv. 2017, 7 (73), 46286-46296.
73. Zhang, J.; Liu, S.; Liang, H.; Dong, R.; Feng, X., Hierarchical Transition-Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2015, 27 (45), 7426-31.
74. Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M., Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26 (48), 8163-8.
75. Kang, J. S.; Kim, J.; Lee, M. J.; Son, Y. J.; Chung, D. Y.; Park, S.; Jeong, J.; Yoo, J. M.; Shin, H.; Choe, H.; Park, H. S.; Sung, Y. E., Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction. Adv. Sci. 2018, 5 (1).
76. Ray, J.; Chaudhuri, T. K., Growth and structural properties of Molybdenum thin films deposited by DC sputtering. J. Optoelectron. Adv. Mater. 2015, 17 (5-6), 634-639.
77. Camacho-Lopez, M. A.; Escobar-Alarcon, L.; Picquart, M.; Arroyo, R.; Cordoba, G.; Haro-Poniatowski, E., Micro-Raman study of the m-MoO2 to alpha-MoO3 transformation induced by cw-laser irradiation. Opt. Mater. 2011, 33 (3), 480-484.
78. Spevack, P. A.; McIntyre, N. S., Thermal reduction of MoO3. J. Phys. Chem. 1992, 96 (22), 9029-9035.
79. Jegal, J. P.; Kim, H. K.; Kim, J. S.; Kim, K. B., One-pot synthesis of mixed-valence MoO(x) on carbon nanotube as an anode material for lithium ion batteries. J. Electroceram. 2013, 31 (1-2), 218-223.
80. Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J.; Kim, Y.; Lee, C.; Kim, T., Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition. Adv. Mater. 2015, 27 (35), 5223-5229.
81. Zhang, X.; Jiang, J. Z.; Suleiman, A. A.; Jin, B.; Hu, X. Z.; Zhou, X.; Zhai, T. Y., Hydrogen-Assisted Growth of Ultrathin Te Flakes with Giant Gate-Dependent Photoresponse. Adv. Funct. Mater. 2019, 29 (49).
82. Song, Q. J.; Wang, H. F.; Pan, X. C.; Xu, X. L.; Wang, Y. L.; Li, Y. P.; Song, F. Q.; Wan, X. G.; Ye, Y.; Dai, L., Anomalous in-plane anisotropic Raman response of monoclinic semimetal 1T '-MoTe2. Sci. Rep. 2017, 7.
83. McGlynn, J. C.; Cascallana-Matias, I.; Fraser, J. P.; Roger, I.; McAllister, J.; Miras, H. N.; Symes, M. D.; Ganin, A. Y., Molybdenum Ditelluride Rendered into an Efficient and Stable Electrocatalyst for the Hydrogen Evolution Reaction by Polymorphic Control. Energy Technol. 2018, 6 (2), 345-350.
84. Xie, X.; Yu, R.; Xue, N.; Yousaf, A. B.; Du, H.; Liang, K.; Jiang, N.; Xu, A.-W., P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. J Mater Chem A 2016, 4 (5), 1647-1652.
校內:2027-08-19公開