| 研究生: |
王晴 Wang, Ching |
|---|---|
| 論文名稱: |
半潛式平台之垂盪板設計比較及數值分析研究 Comparative and Numerical Study on Design of Heave Plate of Semi-submersible Platform |
| 指導教授: |
楊瑞源
Yang, Ray-yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 半潛式浮台 、15MW風機 、垂盪板 、數值模擬 、FLOW-3D 、OrcaFlex |
| 外文關鍵詞: | Semi-submersible floating platform, 15MW wind turbine, heave plate, numerical simulation, FLOW-3D, OrcaFlex |
| 相關次數: | 點閱:62 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前,我國政府正大力推動離岸風電的發展,積極開發綠色新能源。半潛式浮台作為一種重要的海上結構形式,近年來在海上風力發電領域得到了廣泛關注。其獨特的設計和結構特點,使其在深水和遠海區域的風電開發中具有顯著優勢。
此外,浮式風機可以先在港口完成組裝,並使用拖船運送至目標場址進行安裝。當風機出現故障時,亦可將其拖回港口進行維修,大幅降低了海上安裝及拆除的危險性。我國西部海域是世界公認的優良風場之一,水深約在 50 至 100 公尺之間。半潛式平台吃水深度相對較淺的特性,非常適合我國海域。
然而,正因為半潛式平台吃水深度較淺,在極端波浪條件下,其穩定性和安全性可能受到質疑。因此,本研究利用垂盪板設計,重點分析平台在極端海況下的穩定性和抗風浪性能。
通過對國內外半潛式浮台風電項目現狀與發展趨勢的綜述,並以緬因大學15MW風機模型 Volturn US-S 結合數值模擬分析,深入探討了半潛式浮台在不同海況下的動態響應特性,對半潛式浮台的垂盪板設計進行了詳細研究。垂盪板作為附加在浮台下部的水平板結構,能夠增加浮台的附加質量和阻尼,有效抑制垂盪運動,提高平台的穩定性。
研究結果表明,合理設計的垂盪板可以顯著降低浮台在垂蕩方向的運動幅度,減小風浪對風機的影響,從而提高風機的運行效率和使用壽命。本文通過參數化研究,分析了不同垂盪板的尺寸、形狀和佈置方式對浮台動態性能的影響,並提出了優化的設計方案。
本研究為未來海上風電項目的設計、建造和運營提供了重要的理論依據,對促進海上風電技術的進步和可再生能源的開發具有重要意義。
The purpose of the study is to design heave plates to improve the stability and wind and wave resistance of semi-submersible platforms under extreme sea conditions to overcome the potential stability challenge posed by the shallow draft of the platforms. This study aims to apply the design to the development of offshore wind power in Taiwan. This study reviews the status quo and development of semi-submersible offshore wind power projects both local and abroad. Based on VolturnUS-S 15MW wind turbine model developed by University of Maine, numerical simulations were conducted to analyze the dynamic response properties of semi-submersible platforms under different sea conditions. After thorough research, heave plates are designed to be attached to the lower part of platforms to increase the added mass and damping of the platforms with the purpose of controlling platform heave motion and enhancing their stability. By means of parametric research, this study investigates the impact of different sizes, shapes, and configurations of heave plates on the dynamic performance of the platforms.
This study shows that heave plates with proper design can significantly reduce heave motion amplitude of the platforms and alleviate the impact caused by wind and waves on wind turbines, thus boosting the turbines’ operational efficiency and lifespan. The design of heave plates is capable of controlling platforms’ heave motion and enhancing their stability. In this study, an optimized design of heave plates is proposed via parametric analysis. The experimental results provide an important theoretical basis for the design, construction and operation for future offshore wind power projects and play a significant role in improving related technology and developing renewable energy.
Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., ... & Barter, G. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-megawatt offshore reference wind turbine (No. NREL/TP-5000-76773). National Renewable Energy Lab.(NREL), Golden, CO (United States); Univ. of Maine, Orono, ME (United States).
American Bureau of Shipping. (2021). Floating offshore wind turbines. ABS.
Andersen, M. T., Hindhede, D., & Lauridsen, J. (2015). Influence of model simplifications excitation force in surge for a floating foundation for offshore wind turbines. Energies, 8(4), 3212-3224.
Ansys, A. (2021). AQWA theory manual. AQWA: Canonsburg, PA, USA.
Ansys, I. (2024). Lecture 1: Introduction.
Ansys. (2015). Aqwa Theory Manual. Ansys, 15317(November), 174.
Barkhudarov, M., & Wei, G. (2014). Modeling of the coupled motion of rigid bodies in liquid metal. Flow Science, Inc.
Bharath, B., Sritharan, S., & Subramaniam, P. (2023). Floating offshore wind turbine concepts for deepwater deployment. Renewable and Sustainable Energy Reviews, 167, 112604.
Bw Ideol. (2024). Floatgen demonstrator.
Chen, N.-C. (2024). Nonlinear Stiffness Modeling for Hybrid Mooring Systems of Floating Offshore Wind Turbine(Master's thesis, National Cheng Kung University, Department of Hydraulic & Ocean Engineering). National Cheng Kung University Thesis Repository.
Chung, J., & Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60(2), 371-375.
Coulling, A. J., Goupee, A. J., Robertson, A. N., Jonkman, J. M., & Dagher, H. J. (2013). Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. Journal of Renewable and Sustainable Energy, 5(2), 023116.
Cui, F., Chen, S., Wang, W., Zhuo, Y., & Li, Y. (2023, June). Hydrodynamic Response Analysis of the Combined IEA-15-240-RWT and UMaine VolturnUS-S System to Extreme Loading. In ISOPE International Ocean and Polar Engineering Conference(pp. ISOPE-I). ISOPE.
DNV. (2022). Offshore floating wind turbines: The next generation of energy. DNV.
FLOW Science, Inc. (2024). FLOW-3D: Computational fluid dynamics (CFD) software for accurate simulations of fluid flow.
Gkiokas, C. (2024). Innovative Floating Wind Turbine with Synthetic Mooring System and Feasibility Analysis of a Solar-Wind-Battery Hybrid System (Doctoral dissertation, Massachusetts Institute of Technology).
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., . . . Kruseman, P. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A.
Iberdrola. (n.d.). Floating platforms for wind turbines.
Lamb, H. (1997). Hydrodynamics. Dover Publications.
National Renewable Energy Laboratory (NREL). (2023, August). Offshore wind. U.S. Department of Energy.
National Renewable Energy Laboratory. (2024). Offshore wind platform dynamics and design considerations.
Orcina. (2024). OrcaFlex: Marine systems modelling software.
OrcaFlex Manual. Orcina Ltd. Daltongate Ulverston Cumbria LA12 7AJ,UK.
Smith, K., Davey, T., Forehand, D., Pillai, A., Xiao, Q., & Tao, L. (2023, September). The Dynamic response of floating offshore renewable energy devices: Sensitivity to mooring rope stiffness. In Proceedings of the European Wave and Tidal Energy Conference (Vol. 15).
Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Pearson Education.
Wang, C.-W. (2021). Near full-scale hydraulic experiments and field tests of barge-type floating wind turbine system(Master's thesis, National Cheng Kung University, Department of Hydraulic & Ocean Engineering). National Cheng Kung University Thesis Repository.
Yang, W.-H. (2020). Experimental and numerical study of hydrodynamic and stability analysis of barge-type FOWT platform (Master's thesis, National Cheng Kung University, Department of Hydraulic & Ocean Engineering). National Cheng Kung University Thesis Repository.
經濟部水利署第二河川局. (2005). 新竹港南海岸環境保護及營造計劃規劃報告.
工研院. (2014, July). 工研院研究報告.
趙偉廷 & 楊智傑. (2020). 台灣離岸風場於極端氣候條件下之極端波浪特性探討. 第42屆海洋工程研討會, 基隆, 2020年11月.
趙偉廷 & 楊智傑. (2021). 離岸風場季風及颱風下之極端風速條件分析研究. 第43屆海洋工程宜討會, 桃園, 2021年11月.
經濟部標準檢驗局. (2023). 離岸風力發電場址調查及設計技術指引.
台灣電力公司. (2024). 離岸風力發電介紹.
經濟部能源局. (2024). 再生能源資訊網.