簡易檢索 / 詳目顯示

研究生: 林妤臻
Lin, Yu-Chen
論文名稱: 藻油液胞的藥物包覆特性
Encapsulation characteristics of microalgal lipid vesicles
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 137
中文關鍵詞: 微藻油液胞葉黃素膜流動性包覆效率
外文關鍵詞: microalgal lipid, vesicle, lutein, membrane fluidity, encapsulation efficiency
相關次數: 點閱:69下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用由破囊弧菌萃取之兩不同批次藻油製備藥物傳輸載體,亦利用docosahexaenoic acid(DHA)製備液胞以和藻油的結果比較。所形成之液胞粒徑大約落在150~200 nm之間,界面電位呈現負值,其負電來源為脂肪酸解離。液胞之穩定天數最高可大於700天,物理穩定性佳。至於藥物包覆,嘗試利用液胞分別包覆疏水性藥物葉黃素、親水性藥物熊果素。研究中首先包覆親水性藥物熊果素,結果顯示兩批次藻油及DHA都能成功包覆,證明其皆形成液胞的結構。包覆葉黃素後液胞的粒徑明顯上升,是葉黃素分子內嵌至雙層膜中所致,界面電位些微提升則是因為部分葉黃素質子化。螢光偏極化實驗及穿透式紅外光譜顯示包覆葉黃素後,雙層膜的流動性下降,推測液胞在包覆葉黃素後應更不容易洩漏。追蹤包覆效率隨時間之變化,結果顯示包覆越高濃度的葉黃素,藻油液胞降低葉黃素降解的效果越明顯。最後,在溶血實驗及細胞活性實驗中,所有組成之液胞在低於約0.25 mM時皆可視為不具毒性。以上結果顯示藻油液胞能包覆疏水性、親水性藥物,且具有高度生物相容性,是有應用價值之藥物傳輸載體。

    In this study, two batches of fatty acid mixture cultivated from microalgae- Thraustochytrium sp. DJ3 strain were utilized to prepare drug delivery carriers. We also fabricated vesicle by docosahexaenoic acid (DHA) and compared the results with microalgal lipids. The vesicles had the size between 150 to 200 nm, while the negatively charged character could be explained by the partial dissociation of the fatty acid molecules. The vesicles could be stable up to 700 days and possessed high physical stability. As for the drug encapsulation, we tried to encapsulate hydrophobic substance-lutein and hydrophilic substance-arbutin, respectively. The successful encapsulation of arbutin by microalgal lipid carriers proved the formation of vesicular structure. For the encapsulation of lutein, the initial size increased due to the insertion of lutein molecules into the bilayer structure. The partial protonation of lutein molecules shifted the zeta potential of the vesicles to a less negative value. From both fluorescence polarization and Fourier-transform infrared spectroscopy, the bilayer fluidity decreased after encapsulating lutein, and one would expect less leakage of the vesicular structures. Tracing the variation of encapsulation efficiency through time, it was found that the higher the concentration of lutein encapsulated, the more effective the vesicles could protect lutein from degradation. In hemolysis and cell viability test, all the vesicles could be considered as non-toxic at a concentration lower than approximately 0.25 mM. The results showed that microalgal lipid vesicle was capable of encapsulating both hydrophilic and hydrophobic substances and possessed high biocompatibility. Therefore, vesicles fabricated from microalgal lipids and DHA are potential drug delivery carriers with further applications.

    總目錄 摘要 III Extended Abstract IV 誌謝 XVI 總目錄 XVII 表目錄 XXI 圖目錄 XXIV 符號說明 XXIX 第一章 緒論 1 1.1 前言 1 1-2 文獻回顧 3 1-2-1 脂肪酸液胞 3 1-2-2 微藻生產之油脂 7 1-2-3 液胞雙層膜的流動性 10 1-2-4 液胞的相轉移行為 11 1-2-5 碳鏈對稱性和鏈長的效應 15 1-2-6 疏水性藥物的包覆 16 1-2-7 葉黃素和脂肪酸載體之交互作用 18 1-2-8 生物毒性 20 1-3 研究動機與目的 21 第二章 實驗 23 2-1 藥品 23 2-2 實驗儀器及裝置 26 2-2-1 超音波震盪分散裝置 26 2-2-2 動態光散射法粒徑及界面電位分析儀 26 2-2-3 穿透式電子顯微鏡 32 2-2-4 凝膠層析管 32 2-2-5 薄膜離心過濾法 33 2-2-6 傅利葉轉換紅外光譜儀 34 2-2-7 高效能液相層析儀 37 2-2-8 螢光光譜儀 37 2-2-9 冷凍乾燥機 38 2-2-10 紫外-可見分光光度計 39 2-3 實驗方法 40 2-3-1 液胞分散液的製備 40 2-3-2 液胞粒徑分布及界面電位的量測 41 2-3-3 螢光偏極化實驗 42 2-3-4 穿透式紅外光譜的分析 42 2-3-5 葉黃素之包覆效率評估 43 2-3-6 熊果素之包覆效率評估 44 2-3-7 溶血測試 45 2-3-8 細胞活性測試 46 第三章 結果與討論 49 3-1 藻油液胞 49 3-1-1 藻油液胞的物化特性 49 3-1-2 稀釋對藻油液胞穩定性的影響 61 3-1-3 藻油液胞雙層膜的相轉移行為 67 3-1-4 藻油液胞的雙層膜流動性 70 3-1-5 藻油液胞的穩定性 71 3-2 包覆葉黃素/熊果素之藻油液胞 76 3-2-1 包覆葉黃素/熊果素對藻油液胞物化特性的影響 76 3-2-3 包覆葉黃素/熊果素對藻油液胞雙層膜流動性的影響 84 3-2-3 藻油液胞之脂溶性物質—葉黃素包覆效率 96 3-2-4 藻油液胞之水溶性物質—熊果素包覆效率 107 3-3 藻油液胞之生物相容性 109 3-3-1 藻油液胞之溶血測試 109 3-3-1 藻油液胞之細胞活性測試 112 第四章 結論 121 參考文獻 124   表目錄 表1-1 六種微藻的油脂含量(Matos, 2016)。 8 表1-2 微藻生產的油脂中DHA所佔比率。 9 表2-1 由破囊壺菌DJ3萃取之批次一(2015 batch)藻油的成分。 24 表2-2 由破囊壺菌DJ3萃取之批次二(2017 batch)藻油的成分。 25 表2-3 在亨利方程式(Henry equation)中,與κa對應的f(κa)值。 31 表2-4 以初濃度10 mM之批次一藻油液胞為例,液胞和細胞混合後濃度、細胞培養液濃度與液胞液初始添加濃度表。 48 表3-1 由藻油及DHA製備出之液胞的初始平均粒徑、粒徑分布PDI值、界面電位及穩定天數。 53 表3-2 由藻油製備出之液胞分散液的pH值。 53 表3-3 14 mM批次二藻油液胞分散液經過不同程度稀釋(2、5、10、50、100 倍)後的液胞粒徑及界面電位。 62 表3-4 8 mM DHA液胞分散液經過不同程度稀釋(2、5、10、50、100 倍)後的液胞粒徑及界面電位。 63 表3-5 不同材料所製備液胞分散液之螢光偏極化值。 70 表3-6 批次二藻油液胞以及其包覆維他命E醋酸脂後的初始平均粒徑、粒徑分布PDI值、界面電位及穩定天數。 73 表3-7 由批次一及批次二藻油製備出之包覆不同藥物液胞的初始平均粒徑、粒徑分布PDI值、界面電位及穩定天數。 78 表3-8 由DHA製備出之包覆不同藥物液胞的初始平均粒徑、粒徑分布PDI值、界面電位及穩定天數。 79 表3-9 批次二藻油液胞包覆不同濃度葉黃素#2的初始平均粒徑、粒徑分布PDI值、界面電位及穩定天數。 81 表3-10 DHA液胞包覆不同濃度葉黃素#2的初始平均粒徑、粒徑分布PDI值、界面電位及穩定天數。 82 表3-11批次二藻油液胞加入DPH前後的平均初始粒徑、粒徑分布PDI值、界面電位及穩定天數。 88 表3-12 DHA液胞加入DPH前後的平均初始粒徑、粒徑分布PDI值、界面電位及穩定天數。 89 表3-13 批次二藻油液胞以及DHA液胞包覆熊果素前後之螢光偏極化值,以360 nm為激發波長,460 nm為吸收波長。 90 表3-14 批次二藻油液胞以及DHA液胞包覆葉黃素前後之螢光偏極化值,以300 nm為激發波長,600 nm為吸收波長。 92 表3-15 批次二藻油及DHA液胞包覆熊果素/葉黃素,以穿透式紅外光譜分析法測量2920 cm-1峰值附近的波數結果。 94 表3-16 以批次一及批次二藻油液胞包覆初始添加量為0.05 mM的葉黃素#1,載體材料、製程結束後分散液中之葉黃素濃度、被包覆之葉黃素濃度、包覆效率。 100 表3-17 以批次二藻油及DHA液胞包覆初始添加量為0.05 mM的葉黃素#2,載體材料、製程結束後分散液中之葉黃素濃度、被包覆葉黃素濃度及包覆效率。 101 表3-18 以批次二藻油液胞包覆0.05、0.10、0.15、0.20、0.25、0.29 mM的葉黃素#2,初始濃度、製程結束後分散液中之葉黃素濃度、被包覆葉黃素濃度及包覆效率。 102 表3-19 DHA液胞包覆0.05、0.10、0.15、0.20、0.25、0.29 mM的葉黃素#2,初始濃度、製程結束後分散液中之葉黃素濃度、被包覆葉黃素濃度及包覆效率。 103 表3-20 批次二藻油液胞包覆0.05、0.10、0.15、0.20、0.25、0.29 mM的葉黃素#2,初始濃度及經過30天後分散液中之葉黃素濃度、被包覆之葉黃素濃度、實際包覆效率及包覆效率。 106   圖目錄 圖1-1 以脂質為材料所形成之微脂粒結構的示意圖。 1 圖1-2 界面活性劑參數與對應的結構(Segota and Tezak, 2006)。 6 圖1-3 液胞雙層膜結構隨溫度改變之情形(Heimburg, 2000)。 12 圖1-4 利用動態光散射法測量液胞相轉移溫度的示意圖(Michel et al., 2006)。 14 圖2-1 Nano ZS雷射光散射法粒徑及界面電位測定儀的量測示意圖。 27 圖2-2 動態光散射儀隨樣品濃度及粒子大小不同而調整儀器參數。 28 圖2-3 葡聚醣膠球之網狀篩孔。 33 圖2-4 薄膜離心過濾法。 34 圖2-5 可拆卸式液槽之元件組成圖。 35 圖2-6 強制型液胞分散液之製備程序。 41 圖2-7 使用毛細液膜法量測到的液胞分散液之紅外光譜圖。 43 圖3-1 左圖為穩定無聚集之樣品經過粒徑量測所得到的相關函數曲線,右圖為當樣品中有大粒子或聚集體存在時,粒徑量測分析所得到的相關函數曲線。 49 圖3-2 由左至右分別為10 mM第一批次藻油、14 mM第二批次藻油、8 mM DHA所製備出的液胞分散液外觀。 54 圖3-3 10 mM批次一藻油所製備出液胞的初始粒徑分布。 55 圖3-4 14 mM批次二藻油所製備出液胞的初始粒徑分布。 56 圖3-5 DHA所製備出液胞的初始粒徑分布。 56 圖3-6 10 mM批次一藻油所製備出液胞的粒徑分布隨時間的變化。 57 圖3-7 14 mM批次一藻油所製備出液胞的粒徑分布隨時間的變化。 58 圖3-8 8 mM DHA所製備出液胞的粒徑分布隨時間的變化。 59 圖3-9 14 mM批次二藻油所製備出液胞的TEM影像。 60 圖3-10 14 mM批次二藻油液胞分散液(a)原液(14 mM)、(b)經稀釋2倍(7 mM)、(c)5倍(2.8 mM)、(d)10倍(1.4 mM)、(e)50倍(0.28 mM)、(f)100倍(0.14 mM)的液胞初始粒徑分布。 64 圖3-11 8 mM DHA液胞分散液(a)原液(8 mM)、(b)經稀釋2倍(4 mM)、(c)5倍(1.6 mM)、(d)10倍(0.8 mM)、(e)50倍(0.16 mM)的液胞初始粒徑分布。 65 圖3-12 8 mM DHA液胞分散液原液(8 mM)、經稀釋2倍(4 mM)、5倍(1.6 mM)、10倍(0.8 mM)、50倍(0.16 mM)、100倍(0.08 mM)後的外觀。 66 圖3-13 批次二藻油液胞以DLS進行(a)升溫、(b)降溫測量及DHA液胞以DLS進行(c)升溫、(d)降溫測量所得粒徑與count rate對溫度作圖的結果。 69 圖3-14 批次二藻油液胞分散液在製備完成5天內(左)以及300天後(右)的外觀。 72 圖3-15 (a)14 mM批次二藻油液胞粒徑分布隨時間變化圖。(b)14 mM批次二藻油液胞包覆維他命E醋酸脂後粒徑分布隨時間變化圖。 74 圖3-16 (a)14 mM批次二藻油液胞吸光值隨時間變化圖。(b)14 mM批次二藻油液胞加入維他命E醋酸脂後吸光值隨時間變化圖。 75 圖3-17 由左而右分別為批次二藻油液胞未包覆藥物、包覆熊果素、包覆葉黃素#1之液胞分散液外觀。 80 圖3-18 由左而右分別為14 mM批次二藻油液胞包覆0.05 、 0.10 、 0.15 、 0.20 、 0.25 、 0.29 mM葉黃素#2之液胞分散液外觀。 80 圖3-19 (a)批次二藻油液胞包覆不同濃度葉黃素之粒徑及界面電位的改變。(b)DHA液胞包覆不同濃度葉黃素粒徑以及界面電位的改變。 83 圖3-20 (a)DPH、(b)葉黃素、(c)批次二藻油、(d)DHA及(e)熊果素之吸收圖譜,縱軸為吸光值,橫軸為波長。 91 圖3-21 (a)DPH及(b)葉黃素之UV-Vis吸收圖譜,以及其所放出螢光的大約波長位置。 93 圖3-22 批次二藻油液胞包覆(a)30 mM熊果素、(b)0.05 mM葉黃素#2、(c)0.29 mM葉黃素#2,以及DHA液胞包覆(d)30 mM熊果素、(e)0.05 mM葉黃素#2、(f)0.29 mM葉黃素#2,使用DLS測量所得粒徑及derived count rate對溫度作圖。 95 圖3-23 (a)批次二藻油液胞對葉黃素之包覆效率對葉黃素濃度作圖,(b)DHA液胞對葉黃素之包覆效率對葉黃素濃度作圖。 104 圖3-24 (a)被包覆之葉黃素濃度隨時間變化,(b)液胞分散液內葉黃素濃度隨時間變化,(c)被包覆之葉黃素及液胞分散液內葉黃素濃度的疊圖分析。 105 圖3-25 (a)批次一藻油液胞及其分別包覆葉黃素#1、熊果素之溶血率對濃度作圖(b)批次二藻油液胞及其分別包覆葉黃素#2、熊果素之溶血率對濃度作圖(c)DHA液胞及其分別包覆葉黃素#2、熊果素之溶血率對濃度作圖 111 圖3-26 (a)批次一藻油液胞及其分別包覆葉黃素#1、熊果素的液胞,(b)批次二藻油液胞及其分別包覆葉黃素#2、熊果素的液胞及(c)DHA液胞及其分別包覆葉黃素#2、熊果素的液胞,以BEAS-2B細胞測試之細胞存活率對濃度作圖。 113 圖3-27 批次一藻油液胞及其分別包覆葉黃素#1、熊果素後與BEAS-2B細胞作用後在倒立式光學顯微鏡下之影像。 114 圖3-28 批次二藻油液胞及其分別包覆葉黃素#2、熊果素後與BEAS-2B細胞作用後在倒立式光學顯微鏡下之影像。 115 圖3-29 DHA液胞及其分別包覆葉黃素#2、熊果素後與BEAS-2B細胞作用後在倒立式光學顯微鏡下之影像。 116 圖3-30 (a)批次一藻油液胞及其分別包覆葉黃素、熊果素的液胞,(b)批次二藻油液胞及其分別包覆葉黃素、熊果素的液胞及(c)DHA液胞及其分別包覆葉黃素、熊果素的液胞,以H1299細胞測試之細胞存活率對濃度作圖。 117 圖3-31 批次一藻油液胞及其分別包覆葉黃素、熊果素後與H1299細胞作用後在倒立式光學顯微鏡下之影像。 118 圖3-32 批次二藻油液胞及其分別包覆葉黃素、熊果素後與H1299細胞作用後在倒立式光學顯微鏡下之影像。 119 圖3-33 DHA液胞及其分別包覆葉黃素、熊果素後與H1299細胞作用後在倒立式光學顯微鏡下之影像。 120  

    參考文獻

    Aboagla, E. M. E., and Maeda, T., “Arbutin's suppression of cryodamage in goat sperm and its mechanism of cryoprotection,” Theriogenology, 76, 3, 538-546, 2011.
    Aditya, N. P., Hamilton, I. E., and Norton, I. T., “Amorphous nano-curcumin stabilized oil in water emulsion: Physico chemical characterization,” Food chemistry, 224, 191-200, 2017.
    Ali, M. H., Moghaddam, B., Kirby, D. J., Mohammed, A. R. and Perrie, Y., “The role of lipid geometry in designing liposomes for the solubilisation of poorly water soluble drugs,” International Journal of Pharmaceutics, 453, 1, 225-232, 2013.
    Aramaki, Y., Matsuno, R., Nitta, F., Arima, H., and Tsuchiya, S., “Negatively charged liposomes inhibit tyrosine phosphorylation of 41-kDa protein in murine macrophages stimulated with LPS,” Biochemical and Biophysical Research Communications 220, 1-6, 1996.
    Aramaki, Y., Takano, S., and Tsuchiya, S., “Induction of apoptosis in macrophages by cationic liposomes,” FEBS Letter 460, 472-476, 1999.
    Asai, Y. and Watanabe, S., “Interaction of a-tocopherol acetate with phosphatidylcholine and their formation of small dispersed particles,” Chem. pharm. Bull., 46, 11, 1785-1789, 1998.
    Bhardwaj, U. and Burgess, D. J., “Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethadone,” International Journal of Pharmaceutics, 388, 1-2, 181-189, 2010.
    Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J. and Engberts, J., “Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics, 5, 23, 5309-5312, 2003.
    Bouarab, L., Maherani, B., Kheirolomoom, A., Hadan, M., Aliakbarian, B., Linder, M. and Arab-Tehrany, E., “Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.” Colloids Surf B Biointerfaces, 115, 197-204, 2014.
    Bui, T. T., Suga, K., and Umakoshi, H., “Roles of sterol derivatives in regulating the properties of phospholipid bilayer systems,” Langmuir, 32, 6176-6184, 2016.
    Chen, C. and Tripp, C. P., "An infrared spectroscopic based method to measure membrane permeance in liposomes," Biochimica et Biophysica Acta 1778, 2266-2272, 2008.
    Choosakoonkriang, S., Wieyhoff, C. M., Anchordoquy, T. J., Koe, G. S., Smith, J. G. and Middaugh, R. C., “Infrared spectroscopic characterization of the interaction of cationic lipids with plasmid DNA,” The Journal of Biological Chemistry 276, 8037-8043, 2001.
    Cistola, D. P., Hamilton, J. A., Jackson, D. and Small, D. M., “Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule,” Biochemistry, 27, 1881-1888, 1988.
    Crosasso, P., Ceruti, M., Brusa, P., Arpicco, S., Dosio, F. and Cattel, L., “Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes,” Journal of Controlled Release, 63, 1-2, 19-30, 2000.
    Douliez, J. P., Houssou, B. H., Fameau, A. L. and Navailles, L., “Self-assembly of bilayer vesicles made of saturated long chain fatty acid," Langmuir, 32, 401−410, 2016.
    Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H. and Scheule, R. K., “Biophysical characterization of cationic lipid: DNA complexes,” Biochimica et Biophysica Acta-Biomembranes, 1325, 1, 41-62, 1997.
    Eloy, J. O., de Souza, M. C., Petrilli, R., Barcellos, J. P. A., Lee, R. J., and Marchetti, J. M., “Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery,” Colloids and surfaces B: Biointerfaces, 123, 345-363, 2014.
    Feitosa, E., Jansson, J. and Lindman, B., “The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles,” Chemistry and Physics of Lipids, 142, 1-2, 128-132, 2006.
    Fournier, I., Barwicz, J., Auger, M., and Tancrede, P., “The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by amphoteric in B: a FTIR study,” Chemistry and Physics of Lipids 151, 41-50, 2008.
    Gebicki, J. M. and Hicks, M., “Ufasomes are stable particles surrounded by unsaturated fatty acid membranes,” Nature, 243, 232-234, 1973.
    Gonnet, M., Lethuaut, L., and Boury, F., “New trends in encapsulation of liposoluble vitamins, ” Journal of Controlled Release, 146, 3, 276-290, 2010.
    Gruszecki, W. I., and Strzałka, K., “Carotenoids as modulators of lipid membrane physical properties,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1740, 2, 108-115, 2005.
    Grudzinski, W., Nierzwicki, L., Welc, R., Reszczynska, E., Luchowski, R., Czub, J., and Gruszecki, W. I., “Localization and orientation of xanthophylls in a lipid bilayer,” Scientific Reports, 7, 9619, 2017
    Hara, M., Yuan, H., Yang, Q., Hoshino, T., Yokoyama., Mikake, J., “Stabilization of liposomal membranes by thermozeaxanthins: carotenoid-glucoside esters,” Biochimica et Biophysica Acta, 1461, 147-154, 1999.
    Herrington, K. L., Kaler, E. W., Miller, D. D., Zasadzinski, J. A. and Chiruvolu, S., “Phase-behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl-sulfate (SDS),” Journal of Physical Chemistry, 97, 51, 13792-13802, 1993.
    Hincha, D. K., “Effects of alpha-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes,” Febs Letters, 582, 25-26, 3687-3692, 2008.
    Holmberg, K., “Handbook of applied surface and colloid chemistry,” 2002.
    Hong, S. S., Kim, S. H. and Lim, S. J., “Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes,” International Journal of Pharmaceutics, 483, 1-2, 142-150, 2015.
    Huang, H., Belwal, T., Liu, S., Duan, Z., and Luo, Z., “Novel multi-phase nano-emulsion preparation for co-loading hydrophilic arbutin and hydrophobic coumaric acid using hydrocolloids,” Food Hydrocolloids, 93, 92-101, 2019.
    Immordino, M. L., Brusa, P., Arpicco, S., Stella, B., Dosio, F. and Cattel, L., “Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel,” Journal of Controlled Release, 91, 3, 417-429, 2003.
    Inoue, T., Yanagihara, S. I., Misono, Y. and Suzuki, M., "Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids," Chemistry and Physics of Lipids 109, 117-133, 2001.
    Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W., “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society-Faraday Transactions II, 72, 1525-1568, 1976.
    Jayme, M. L., Dunstan, D. E. and Gee, M. L., “Zeta potentials of gum arabic stabilised oil in water emulsions,” Food Hydrocolloids, 13, 459-465, 1999.
    Kawakami, K., Nishihara, Y. and Hirano, K., “Liposome/emulsion transition induced by -tocopheryl acetate” Langmuir, 15, 7454-7460, 1999.
    Kafrawy, O., Zerouga, M., Stillwell, W. and Jenski, L. J., “Docosahexaenoic acid in phosphatidylcholine mediates cytotoxicity more effectively than other -3 and -6 fatty acids,” Cancer Letters, 132, 23-29, 1998.
    Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science, 245, 4924, 1371-1374, 1989.
    Keough, K. M. W. and Davis, P. J., “Gel to liquid-crystalline phase-transitions in water dispersions of saturated mixed-acid phosphatidylcholines,” Biochemistry, 18, 8, 1453-1459, 1979.
    Kodati, V. R., El-Jastimi, R., and Lafleur, M., “Contribution of the intermolecular coupling and librotorsional mobility in the methylene stretching modes in the infrared spectra of acyl chains,” J. Phys. Chem., 98, 12191-12197, 1994.
    Kranenburg, M. and Smit, B., “Phase behavior of model lipid bilayers,” Journal of Physical Chemistry B, 109, 14, 6553-6563, 2005.
    Kuo, J.-H., Jan, M.-S., Chang, C.-H., Chiu, H.-W., and Li, C.-T., “Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells,” Colloids and Surfaces B:Biointerfaces 41, 189-196, 2005.
    Kuo, J.-H., Chang, C.-H., Lin, Y.-L. and Wu, C.-J., “Flow cytometric characterization of interactions between U-937 human macrophages and positively charged catanionic vesicles,” Colloids and Surfaces B:Biointerfaces 64, 307-313, 2008.
    Lakowicz, J. R. (Ed.)., “Principles of fluorescence spectroscopy,” Springer Science & Business Media, 2013.
    Lasic, D. D., “Liposomes: from physics to applications,” Elsevier Amsterdam,” New York, 265-318, 1993.
    Lasic, D. D., “Liposomes in gene delivery,” CRC Press, New York, 67-112, 1997.
    Lasic, D. D. and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Current Opinion in Solid State & Materials Science, 1, 3, 392-400, 1996.
    Lee, W. H., Tang, Y. L., Chiu, T. C. and Yang, Y. M., “Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers,” Journal of Chemical and Engineering Data, 60, 4, 1119-1125, 2015.
    Lentz, B. R., “Membrane “fluidity” as detected by diphenylhexatriene probes,” Chemistry and Physics of Lipids, 50, 3-4, 171-190, 1989.
    Lewis, R. N. A. H. and McElhaney, R. N., “The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy,” Chemistry and Physics of Lipids 96, 9-21, 1998.
    Liu, N. and Park, H.J., “Chitosan-coated nanoliposome as vitamin E carrier,” J. Microencapsulation 26, 235–242, 2009.
    Lloyd, J. B. F., “Synchronized excitation of fluorescence emission spectra,” Nature Physical Science, 231, 20, 64, 1971.
    Lopes, S., Neves, C., Eaton, P. and Gameiro, P., “Cardiolipin, a key component to mimic the E. coli bacterial membrane in model system membranes,” Biophysical Journal, 100, 626-626, 2011.
    Manosroi, A., Wongtrakul, P., Manosroi, J., Sakai, H., Sugawara, F., Yuasa, M. and Abe, M., “Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol,” Colloids and Surfaces B-Biointerfaces, 30, 1-2, 129-138, 2003.
    Marsh, D., “CRC handbook of lipid bilayers,” 1990.
    Massey, J. B., “Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives,” Chemistry and Physics of Lipids, 109, 157-174, 2001.
    Matos, A. P., “Essential fatty acid from microalgae,” Inform, 27, 22-26, 2016.
    Merino-Montero, S., Montero, M. T. and Hernandez-Borrell, J., “Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes,” Biophysical Chemistry, 119, 101-105, 2006
    Morigaki, K. and Peter, Walde, P., “Fatty acid vesicles,” Current Opinion in Colloid & Interface Science, 12, 75-80, 2007.
    Michel, N., Fabiano, A. S., Polidori, A., Jack, R. and Pucci, B., “Determination of phase transition temperatures of lipids by light scattering,” Chemistry and Physics of Lipids, 139, 1, 11-19, 2006.
    Murai, M., Aramaki, Y., and Tsuchiya, S., “Identification of the serum factor required for liposome-primed activation of mouse peritoneal-macrophages-modified alpha (2)-macroglobulin enhances Fc-gamma receptor-mediated phagocytosis of opsonized sheep red-blood-cells,” Immunology 86, 64-70, 1995.
    McMullen, T. P. W., Ruthven, N. A. H., Ronald L. and McElhaney, N., “Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes,” Biophysical Journal, 80, 4 2056-2065, 2000.
    Namania, T., Ishikawa, T., Morigaki, K. and Walde, P., “Vesicles from docosahexaenoic acid,” Colloids and Surfaces B: Biointerfaces, 54, 118-123, 2007.
    New, R. R. C., “Liposomes: a practical approach,” Oxford University Press, New York, 1-32, 1990.
    Oliver, A. E., Hincha, D. K., Crowe, L. M., and Crowe, J. H., “Interactions of arbutin with dry and hydrated bilayers,” Biochimica et Biophysica Acta -Biomembranes, 1370, 1, 87-97, 1998.
    Reis, O., Winter, R. and Zerda, T. W., “The effect of high external pressure on DPPC-cholesterol multilamellar vesicles: a pressure-tuning Fourier transform infrared spectroscopy study,” Biochimica et Biophysica. Acta 1279, 5-16, 1996.
    Regev, O. and Khan, A., “Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems,” Journal of Colloid and Interface Science, 182, 1, 95-109, 1996.
    Ruozi, B., Belletti, D., Tombesi, A., Tosi, G., Bondioli, L., Forni, F. and Vandelli, M. A., “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” International Journal of Nanomedicine, 6, 557-563, 2011.
    Segota, S. and Tezak, D., “Spontaneous formation of vesicles,” Advances in Colloid and Interface Science, 121, 1-3, 51-75, 2006.
    Shi, X. M., and Chen, F., “Stability of lutein under various storage conditions” Food/Nahrung, 41,1 , 38-41,1997.
    Shrewry, Peter., “HEALTHGRAIN methods: analysis of bioactive components in small grain cereals,” Academic Press, 2016.
    Stillwell, W. and Issall, S. R., “Review: Docosahexaenoic acid: membrane properties of a unique fatty acid,” Chemistry and Physics of Lipids, 126, 1–27, 2003.
    Sujak, A., Gabrielska, J., Grudziński, W., Borc, R., Mazurek, P., and Gruszecki, W. I., “Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects,” Archives of Biochemistry and Biophysics, 371, 2, 301-307, 1999.
    Sujak, A., Mazurek, P., and Gruszecki, W. I., “Xanthophyll pigments lutein and zeaxanthin in lipid multibilayers formed with dimyristoylphosphatidylcholine,” Journal of Photochemistry and Photobiology B: Biology, 68,1 , 39-44, 2002.
    Tan, C., Xia, S., Xue, J., Xie, J., Feng, B., and Zhang, X., “Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure,” Journal of Agricultural and Food Chemistry, 61, 34, 8175-8184, 2013.
    Teo, Y. Y., Misran, M., Low, K. H., “Effect of PEGylated lipid and lecinol S-10 on physico-chemical properties and encapsulation efficiency of palmitoleate-palmitoleic acid vesicles,” J Liposome Res, 24, 3, 241-248, 2014.
    Tondre, C. and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science, 93, 1-3, 115-134, 2001.
    Vist, M. R. and Davis, J. H., “Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures - deuterium nuclear magnetic-resonance and differential scanning calorimetry,” Biochemistry, 29, 2, 451-464, 1990.
    Wang, X. and Quinn, P. J., “The distribution of K-tocopherol in mixed aqueous dispersions ofphosphatidylcholine and phosphatidylethanolamine,” Biochimica et Biophysica Acta, 1509, 361-372, 2000.
    Ward, O. P. and Singh, A., “Omega-3/6 fatty acids: Alternative sources of production,” Process Biochemistry, 40, 3627-3652, 2005.
    Watry, M. R., Tarbuck, T. L. and Richmond, G. I., “Vibrational sum-frequency studies of a series of phospholipid monolayers and the associated water structure at the vapor/water interface,” Journal of Physical Chemistry B, 107, 2, 512-518, 2003.
    Wolfangel, P. and Muller, K., “Chain order in lipid bilayers: FTIR and solid state NMR studies on bilayer membranes from 1,2-Dimyristoyl-sn-glycero-3-phosphoglucose,” Journal of Physical Chemistry 107, 9918-9928, 2003.
    Wu, C. J., Kuo, A.T., Lee, C.H., Yang, Y.M., Chang, C.H., “Fabrication of positively charged catanionic vesicles from ion pair amphiphile with double-chained cationic surfactant,” Colloid and Polymer Science, 292, 589-597, 2014.
    Yang, C. H., Chang, N. F., Chen, Y. S., Lee, S. M., Lin, P. J., and Lin, C. C. “Comparative study on the photostability of arbutin and deoxy arbutin: Sensitivity to ultraviolet radiation and enhanced photostability by the water-soluble sunscreen, benzophenone-4,” Bioscience, Biotechnology, and Biochemistry, 77, 5, 1127-1130, 2013.
    Yatcilla, M. T., Herrington, K. L., Brasher, L. L., Kaler, E. W., Chiruvolu, S. and Zasadzinski, J. A., “Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS),” Journal of Physical Chemistry, 100, 14, 5874-5879, 1996.
    余欣盈, “以藻油製備包覆葉黃素之液胞的可行性,” 國立成功大學化學工程學系碩士論文, 2017.
    黃曉貞, “以醱酵策略提升本土破囊壺菌DJ3之DHA生產效能,” 國立成功大學化學工程學系碩士論文, 2015.
    楊政穎, “包覆維他命E醋酸脂之藻油載體的製備及特性分析,” 國立成功大學化學工程學系碩士論文, 2018.

    下載圖示 校內:2024-08-29公開
    校外:2024-08-29公開
    QR CODE