| 研究生: |
温芳儀 Wen, Fang-Yi |
|---|---|
| 論文名稱: |
金奈米粒子於鐵酸鉍薄膜上的色散特性研究 Study of Dispersion Relation of Gold Nanoparticles on BiFeO3 Thin Films |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 金奈米粒子 、鐵酸鉍 、導電性 、色散曲線 |
| 外文關鍵詞: | gold nanoparticles (AuNPs), BiFeO3 (BFO), conductivity, dispersion curve |
| 相關次數: | 點閱:74 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米粒子受到外加電場的影響,造成電子雲集體震盪產生表面電漿子。又因為金奈米粒子的表面電漿共振頻率易受到周圍環境及基板的影響,及其電場高度局域於表面的特性,因此,金奈米粒子被廣泛應用於生醫檢測及表面增強拉曼光譜上。
在本研究中,我們藉由將金奈米粒子放置於具有導電性的鐵酸鉍(BFO)薄膜上,研究鐵酸鉍薄膜的導電性對金奈米粒子色散曲線的影響,並改變鐵酸鉍薄膜的導電性,觀察奈米粒子的色散曲線的變化。
我們利用具有些微導電性的鐵酸鉍薄膜做為基板,透過外加電壓的方式,讓兩種不同底電極的鐵酸鉍薄膜一個導電性上升,另一個則導電性下降,並利用導電式原子力顯微鏡(C-AFM)確認加電壓區域的導電性變化。最後將金奈米粒子均勻鋪灑於導電性改變的鐵酸鉍薄膜上,利用稜鏡全反射的方式量測金奈米粒子於鐵酸鉍薄膜上之表面電漿色散曲線。
以此實驗方法,我們可以藉由外加電壓改變基板導電性的方式來調控金奈米粒子的色散曲線,以期未來可以在微小尺度上做導電性的調控,得到一可調式色散曲線之元件。
In this study, we mainly focus on how to manipulate the surface plasmon resonance (SPR) by varying the conductivity of substrate. The BiFeO3 (BFO) film was used as the substrate to affect the physical properties of AuNPs due to its strong spontaneous polarization and tunable conductivity. We manipulated the conductivity of BFO by applying external voltages and measured the local conductivity of the BFO film by conducting atomic-force microscopy (C-AFM). The dispersion relations of AuNPs on BFO were measured by total reflection method with sample put on the backside of the prism. As the AuNPs placed on substrate with different conductivity, its surface plasmon dispersion curve in absorption spectrum revealed significant different curves. This shows our AuNPs dispersion curve has been successfully tuned by two different conductivity variations after we applied external voltages on BFO.
1. 邱國斌、蔡定平, 物理雙月刊, vol. 二十八卷二期, pp. 472–485, 2006.
2. 吳民耀、劉威志, 物理雙月刊, vol. 二十八卷二期, pp. 486–496, 2006.
3. Swalen, J. D.; Gordon, J. G.; Philpott, M. R.; Brillante, A.; Pockrand, I.; Santo, R. Am. J. Phys. 1980, 48, 669
4. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Phys. Rep. 408 (2005) 131
5. S. Hayashi and T. Okamoto, J. Phys. D: Appl. Phys., 2012, 45, 433001
6. 曾賢德, 物理雙月刊, vol. 32卷2期, pp. 126–135, 2010.
7. Wind, M. M.; Vlieger, J.; Bedeaux, D. Physica A 1987, 141, 33- 57.
8. Okamoto, T.; Yamaguchi, I. J. Phys. Chem. B 2003, 107 (38), 10321-10324.
9. Noguez, C. J. Phys. Chem. C 2007, 111, 3806–3819.
10. Knight, M. W.; Wu, Y.; Lassiter, J. B.; Nordlander, P.; Halas, N. J. Nano Lett. 2009, 9, 2188–2192
11. Wu, Y.; Nordlander, P. J. Phys. Chem. C 2009, 114, 7302–7307.
12. W. G. Cady, McGraw-Hill, New York (1946) .
13. Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, Gordon and Breach Science Publishers, New York, (1976).
14. 吳朗, 全欣資訊圖書股份有限公司(1994).
15. Kenji Uchino. Ferroelectric Devices, Materials Engineering. Marcel Dekker, 2000, ISBN 0-8247-8133-3.
16. A. F. Devonshire, Advances in Physics, 3, 10, 85-130 (1954).
17. 鍾維烈,"鐵電體物理學",科學出版社,(2002).
18. 柯政宏, 成功大學,碩士論文, "鐵酸鉍(111)磊晶薄膜鐵電電域之動態鬆弛" (2009).
19. B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction, 2 nd. Ed.”, Prentice Hall, New Jersey (2001).
20. P. Papon, J. Leblond, P.H.E. Meijer, Springer-Verlag Berlin Heidelberg, French (2006).
21. M. Abplanalp, L.M. Eng and P. Günter, Appl. Phys. A,66, 231 (1998).
22. Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire, and Judith L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).
23. H. Yang, M. Jain, N. A. Suvorova, H. Zhou, H. M. Luo, D. M. Feldmann, P. C. Dowden,R. F. DePaula, S. R. Foltyn, and Q. X. Jia, Appl. Phys. Lett. 91, 072911 (2007).
24. Gary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007).
25. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein & R. Ramesh, Nature Materials 8, 229 - 234 (2009).
26. S. Farokhipoor and B. Noheda, arXiv:1104.3267v1 [cond-mat.mtrl-sci] (2011).
27. J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.-Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E. K. H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys. Rev. Lett. 105, 197603 (2010).
28. C.-H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L.W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin and R. Ramesh, Nature Materials 8, 485 - 493 (2009).
29. Can Wang, Kui-juan Jin, Zhong-tang Xu, Le Wang, Chen Ge, Hui-bin Lu, Hai-zhong Guo, Meng He, and Guo-zhen Yang, Appl. Phys. Lett. 98, 192901 (2011).
30. 王冠鈞, “鐵酸鉍薄膜之表面電漿增強拉曼光譜研究,” 國立成功大學, 碩士論文, 102.
31. 陳力俊,"材料電子顯微鏡學",行政院國家科學委員會精密儀器發展中心(2003).
32. Sergei N. Magonov and Myung-Hwan Whangbo, New York VCH, (1996).
33. Morris, V. J., Kirby, A. R., Gunning, A. P., Imperial College Press: London, (1999).
34. R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, J. Appl. Phys., 74, 12 (1993).
35. M. Alexe and A. Gruverman, Springer, (2004).
36. J. Yoon, G. Lee, S. H. Song, C.-H. Oh, and P.-S. Kim, J. Appl. Phys. 94, 123 (2003)
37. M. L. Juan, M. Righini, R. Quidant, Nat. Photonics 5, 349 (2011)