簡易檢索 / 詳目顯示

研究生: 丁昶勛
Ting, Chang-Hsun
論文名稱: 具等腰棱柱形屋頂、相變化材料及穿孔隔板之建築的流體流動及熱傳特性預測
Prediction of fluid flow and heat transfer characteristics in a building with an isosceles prismatic roof, phase change material and perforated partition
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 130
中文關鍵詞: 逆向計算流體動力學相變化材料穿孔隔板等腰屋頂建築
外文關鍵詞: CFD, Inverse Numerical Method, Passive Buildings, Phase Change Materials
相關次數: 點閱:48下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究擬以逆向三維計算流體動力學方法配合超定的實驗溫度數據及最小平方法來預測具等腰棱柱形屋頂之建築內的適當流動模型,熱傳及流體流動特性,入射至屋頂的總太陽熱及石蠟的吸收熱。透過對各種流動模型的測試發現,無論改變屋頂傾斜角或加裝抽風扇,零方程式的RMSE皆屬最小。因此在其他變因組別皆選擇零方程式作為運算的紊流模型。
    在自然對流情況下,大傾斜角的熱對流係數比小傾斜角高約3.4%,導致散熱效益增加;相反,在混合對流情況下,大傾斜角的熱對流係數比小傾斜角低約8.2%,導致散熱效益下降。若加裝風扇,在30°傾斜屋頂的熱對流係數約提升4.32倍,而在45°傾斜屋頂的熱對流係數約提升3.72倍。若將相變化材料貼合於屋頂,在不同流動形式與傾斜角度狀況下,其吸熱效率 Q_pcm/Q_h 依序為63%、54%、39%及45%。此外,亦發現加裝相變化材料不會造成空氣溫度顯著上升。本研究對於被動式建築的設計提供節能與通風方法,藉以呼應全球關注的「能源危機」之相關議題。

    In this study, a simulated attic building with an isosceles prismatic roof was used, where a silicone electric heater were attached to the left side of the roof to simulate sunlight. The research combines phase change materials, the installation of exhaust fans, and changes in roof angle to explore internal flow field trends and heat transfer characteristics.
    Under natural convection, the steeper roof has higher heat convection efficiency, enhancing heat dissipation. However, in mixed convection, he steeper roof has lower heat convection efficiency, reducing heat dissipation efficiency.
    If fans are installed, the heat convection coefficient on both 30° and 45° inclined roofs increases, resulting in an increase in heat dissipation efficiency. If phase change materials are applied to the roof, the heat absorption efficiency Q_pcm/Q_h under different convection conditions and inclination angles is 63%, 54%, 39%, and 45% sequentially. Additionally, it was found that installing phase change materials does not lead to a significant increase in air temperature.

    摘要II Extend AbstractIII 致謝X 目錄XI 表目錄XV 圖目錄XVIII 符號說明XXII 第一章 緒論1 1-1前言1 1-2 文獻回顧2 1-3 研究目的5 1-4 本文架構6 第二章 逆向熱傳方法8 2-1計算流體力學簡介8 2-2基本假設9 2-3紊流模型簡介10 2-4 RANS11 2-4-1 Zero-Equation紊流模型14 2-4-2標準k-ε紊流模型14 2-4-3 RNG k-ε紊流模型16 2-5熱傳導方程式與邊界條件18 2-6逆向方法簡介19 2-6-1均方根誤差22 2-6-2最小平方法23 第三章 實驗設計與方法27 3-1實驗模型27 3-2模型尺寸29 3-3實驗設備32 3-3-1供電加熱系統32 3-3-2溫度的量測與擷取系統32 3-3-3風扇與風速量測設備33 3-4實驗材料性質35 3-5實驗變因38 3-6溫度量測點位置39 3-7實驗步驟42 第四章 三維CFD模擬方法與設定44 4-1 模擬軟體簡介44 4-2 三維模擬模型45 4-3 網格46 4-3-1 網格品質47 4-3-2網格獨立性49 4-4模擬軟體設定54 第五章 結果分析與討論56 5-1 簡介56 5-2紊流模型之選擇60 5-2-1 改變流動模式之紊流模型選擇60 5-2-2 改變傾斜角之紊流模型選擇64 5-3 傾斜角度之影響67 5-4 安裝抽風扇之影響71 5-5相變化材料之影響75 第六章 結論與未來展望97 6-1結論97 6-2未來展望98 參考資料100

    1. Mlaouah, H., T. Tsuji, and Y. Nagano, A study of non-Boussinesq effect on transition of thermally induced flow in a square cavity. International Journal of Heat and Fluid Flow, 1997. 18(1): p. 100-106.
    2. Shi, X. and J.M. Khodadadi, Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall. Journal of Heat Transfer, 2003. 125(4): p. 624-634.
    3. Bilgen, E., Natural convection in cavities with a thin fin on the hot wall. International Journal of Heat and Mass Transfer, 2005. 48(17): p. 3493-3505.
    4. Elatar, A., M.A. Teamah, and M.A. Hassab, Numerical study of laminar natural convection inside square enclosure with single horizontal fin. International Journal of Thermal Sciences, 2016. 99: p. 41-51.
    5. Kadari, A., N.E. Sad Chemloul, and S. Mekroussi, Numerical investigation of laminar natural convection in a square cavity with wavy wall and horizontal fin attached to the hot wall. Journal of Heat Transfer, 2018. 140(7).
    6. Sparrow, E.M., A. Haji-Sheikh, and T.S. Lundgren, The inverse problem in transient heat conduction. Journal of Applied Mechanics, 1964. 31(3): p. 369-375.
    7. Chan, Y.L. and C.L. Tien, A numerical study of two-dimensional laminar natural convection in shallow open cavities. International Journal of Heat and Mass Transfer, 1985. 28(3): p. 603-612.
    8. Chen, Q. and W. Xu, A zero-equation turbulence model for indoor airflow simulation. Energy and Buildings, 1998. 28(2): p. 137-144.
    9. Prandtl, L., Bericht über untersuchungen zur ausgebildeten turbulenz. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1925. 5(2): p. 136-139.
    10. Chen, H.T., M.C. Lin, and J.R. Chang, Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall. International Journal of Heat and Mass Transfer, 2018. 124: p. 1217-1229.
    11. Chen, H.T., et al., Prediction of 3D natural convection heat transfer characteristics in a shallow enclosure with experimental data. Progress in Nuclear Energy, 2022. 153: p. 104425.
    12. Chen, H.T., et al., Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin. Numerical Heat Transfer, Part A: Applications, 2023. 84(6): p. 641-658.
    13. Kurpisz, K. and A.J. Nowak, Inverse thermal problems. 1995: Computational Mechanics Publications.
    14. Abdulrahman, R.S., F.A. Ibrahim, and S.F. Dakhil, Development of paraffin wax as phase change material based latent heat storage in heat exchanger. Applied Thermal Engineering, 2019. 150: p. 193-199.
    15. Li, D., et al., Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption. Applied Energy, 2018. 222: p. 343-350.
    16. Khan, Z. and Z.A. Khan, Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications. Applied Energy, 2017. 206: p. 1158-1168.
    17. Kara, Y.A. and A. Kurnuç, Performance of coupled novel triple glass and phase change material wall in the heating season: an experimental study. Solar Energy, 2012. 86(9): p. 2432-2442.
    18. Pomianowski, M., P. Heiselberg, and Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy and Buildings, 2013. 67: p. 56-69.
    19. Chen, H.-T., et al., Natural convection heat transfer in isosceles prismatic roof with perforated partition and phase change material. Thermal Science and Engineering Progress, 2024. 48: p. 102428.
    20. Chen, H.T., et al., Numerical and experimental study of inverse natural convection heat transfer for heat sink in a cavity with phase change material. International Journal of Heat and Mass Transfer, 2024. 224: p. 125333.
    21. Launder, B.E. and D.B. Spalding, Paper 8 - the numerical computation of turbulent flows, in Numerical prediction of flow, heat transfer, turbulence and combustion, S.V. Patankar, et al., Editors. 1983, Pergamon. p. 96-116.
    22. Orszag, S.A., Renormalisation group modelling and turbulence simulations. Near-wall turbulent flows, 1993.
    23. Gasia, J., et al., Experimental evaluation of a paraffin as phase change material for thermal energy storage in laboratory equipment and in a shell-and-tube heat exchanger. Applied Sciences, 2016. 6(4): p. 112.
    24. GmbH, A.P. Viscosity of paraffin wax. [cited 2024 March 20]; Available from: https://wiki.anton-paar.com/en/paraffin-wax/.
    25. Patankar, S.V., W. Minkowycz, and E. Sparrow, Series in computational methods in mechanics and thermal sciences. McGraw Hill Book Company, New York, 1980: p. 1-197.
    26. Arpaci, V.S., Kao, S.H., and Selamet, A., “Introduction to heat transfer”. Prentice Hall. 1999.
    27. Chen, H.-T., et al., Numerical and experimental study of inverse natural convection-conduction heat transfer in an inclined rectangular cavity. Numerical Heat Transfer, Part B: Fundamentals, 2023: p. 1-18.
    28. 四管於封閉空腔內之三維自然對流的熱傳特性研究. 2021: National Cheng Kung University Department of Mechanical Engineering.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE