簡易檢索 / 詳目顯示

研究生: 劉昱緯
LIU, YU-WEI
論文名稱: 地面雷射掃描於結構幾何辨識與損傷檢測之應用
Terrestrial Laser Scanner for Geometric and Damage Identification of Structures
指導教授: 侯琮欽
Hou, Tsung-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 地面雷射掃描kd-tree邊界特徵點雲M3C2演算法模糊分群演算法結構健康檢測
外文關鍵詞: terrestrial laser scanner, kd-tree, M3C2 algorithm, fuzzy clustering algorithm, structural health monitoring, edge extraction algorithm
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來三維雷射掃描技術不斷更新,高精度高效能的雷射掃描儀已逐漸商業化應用於土木工程領域,其優點在於能夠快速獲取大量且精度高的空間點雲資訊,因此已逐漸取代傳統土木工程量測技術。然而,在處理大量散亂點雲資訊的應用上,目前較為成熟技術皆屬掃描的點雲資料作結合工作及模型建立上,對於點雲資料再進一步分析應用上仍待專家們持續發展的領域。本研究提出將各項已發展成熟之演算法作整合,建立自動化分析之數值模型,並藉由實驗進行驗證後將其應用於結構健康檢測。本研究核心主要分為兩大類型,分別為「自動化結構損傷識別」及「自動化提取邊界特徵點雲數值模型應用於結構健康檢測」,前者主要透過適應性網格切分點雲區域,透過演算各區域內的特徵值並將其作分類,再將附屬類別做為檢測損傷程度依據;後者主要藉由建立kd-tree提升k個鄰域點搜索上的效率,藉由擬合平面之投影向量關係,識別邊界特徵點雲。除了將提取的邊界點雲應用於結構幾何尺寸辨識外,還結合了邊界特徵線擬合分析演算法以及點雲處理軟體Cloud Compare中的M3C2演算法兩套分析模型作為變位監測應用。結果顯示兩種分析方法與接觸式LVDT位移量測數據彼此誤差皆在容許範圍內,驗證本研究提出整合數值模型分析方法之可行性。

    In recent years, three-dimensional laser scanning technology with high precision and high efficiency constantly updated. It has gradually replaced the traditional civil engineering measurement technology. However, currently a large number of mature technologies in the point cloud processing applications belong to the point cloud constraint and modeling. Point cloud data on further analysis and application is currently still waiting for experts in related fields of study of research and development stage. This study establishes of automated numerical model, which integrates various algorithms and verifies by experiment. This study is divided into two major categories namely "Automated identification of structural damage" and "Automatic extraction of boundary characteristic point cloud numerical model to structural health monitoring". The former uses adaptive meshes to divide point clouds, through classifying calculate eigenvalues in each area, and then detect the extent of damage as a subsidiary category basis; the latter mainly by creating kd-tree to enhance the efficiency of the k neighborhood spot search, and by fitting the plane of projection vector relationship, identifying boundary feature point clouds. In addition applied to structural geometry identification, but also a combination of boundary characteristic curve fitting analysis and M3C2 algorithm as displacement monitoring applications. The results showed that both methods and contact data with each other LVDT displacement measurement errors are within the allowable range, to verify the feasibility of the method of analysis in this study the numerical integration of the proposed model.

    目錄 第一章 緒論 1 1.1研究動機與目的 2 1.2研究內容 2 1.3研究方法 2 1.4論文架構 3 第二章 基礎理論與文獻回顧 5 2.1三維雷射掃描儀系統 5 2.1.1光達掃描測距原理 7 2.1.2光達掃描定位原理 8 2.1.3坐標轉換原理 10 2.1.4點雲套合 11 2.1.5 使用儀器與軟體說明 12 2.2光達技術應用結構健康檢測 13 2.2.1結構表面損傷識別 13 2.2.2結構變位監測 15 2.2.3結構幾何尺寸檢核 15 2.2.4邊界特徵點雲識別 16 第三章 數值分析方法 18 3.1 模糊分群演算法 18 3.2 自動化結構損傷識別分析 21 3.2.1三個控制點座標轉換 22 3.2.2適應性網格 23 3.2.3 FFT分析 25 3.2.4特徵值分類 26 3.3 自動化結構幾何辨識 27 3.3.1 kd-tree資料結構 27 3.3.1.1 建立空間拓樸關係 28 3.3.1.2 k個鄰近點搜索 30 3.3.2邊界特徵點雲提取 31 3.3.2.1擬合切平面方程 31 3.3.2.2提取邊界特徵點 32 3.3.2.3邊界特徵點雲排序 33 3.3.2.4切分邊界特徵點雲 34 3.3.3 邊界線擬合 34 3.3.4 角點計算 35 3.4 M3C2演算法 36 第四章 自動化結構幾何辨識 38 4.1 木框結構模擬測試 38 4.1.1實驗設計與點雲資料 38 4.1.2坐標轉換與點雲資料預處理 41 4.1.3邊界特徵點雲提取 43 4.1.4邊界特徵線擬合 47 4.2自製混凝土梁結構幾何辨識 54 4.2.1實驗設計 54 4.2.2邊界特徵點雲提取 55 4.2.3邊界線擬合與結構幾何辨識 56 4.2.3.1直線度分析 57 4.2.3.2梁尺寸分析 59 4.2.3.3斷面幾何中心位置分析 62 第五章 結構健康檢測實例分析 64 5.1 模糊聚類法分析 64 5.1.1實驗資料 64 5.1.2溫度效應於光反射強度資訊影響 66 5.1.3 k-means及fuzzy c-means分析結果 67 5.1.3.1橋墩植生分析 67 5.1.3.2金屬鏽蝕分析 70 5.2裂縫及破壞面檢測分析 73 5.2.1 模擬裂縫掃描試驗 73 5.2.2 現地掃描裂縫分析 85 5.2.3 局部破壞面檢測分析 88 5.3 結構變位監測分析 93 5.3.1點雲資料前置處理 93 5.3.2邊界特徵點雲提取 95 5.3.3變位監測分析結果 95 第六章 結論與建議 106 6.1結論 106 6.2建議 107 參考文獻 108

    參考文獻
    [1]. 徐元俊(2006),「三維雷射掃瞄儀點雲資料密度對最適平面求解精度影響」,國立交通大學土木工程研究所碩士論文。
    [2]. 陳國永(2004),「3D 雷射掃瞄技術應用於隧道變形量測之究」,國立中興大學土木工程學系碩士論文。
    [3]. 黃文杰(2004),「利用 3D 雷射掃瞄儀進行油槽形變監測之研究」,國立中興大學土木工程學系碩士論文。
    [4]. 劉嘉銘(2005),「光達點雲資料特徵萃取之研究」,國立成功大學測量工程研究所碩士論文。
    [5]. Abdel-Qader, I., Abudayyeh, O. and Kelly, M. (2003).“Analysis of edge detection techniques for crack identification in bridges,” Journal of Computing in civil Engineering, ASCE, 17(3), 255-263.
    [6]. Belén Riveiro-Rodríguez. (2010). Terrestrial laser scanning intensity data applied to damage detection for historical buildings. International Journal of archaeological Science 37, 3037 - 3047.
    [7]. Dimitri Lague , Nicolas Brodu , Jérôme Leroux (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS Journal of photogrammetry and Remote Sensing 82 (3), 10–26.
    [8]. Ergun B. (2010). A novel 3D geometric object filtering function for application in indoor area with terrestrial laser scanning data. Opt Laser Technol ; 42 : 799–804.
    [9]. González- Jorge H. (2013). Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners . Constr build Mater ;31:119–128.
    [10].González-Aguilera, D., Gómez-Lahoz, J., Sánchez, J. (2008). A new approach for structural monitoring of large dams with a three-dimensional laser scanner. Sensors 8, 5866e5883.
    [11].J.L. Burati , J.J. Farrington. (1987). Construction Industry Institute—Costs of quality Deviations in Design and Construction, Bureau of Engineering Research, University of Texas, Austin.
    [12].Liu, W.Q., S.E. Chen and Hauser, E. (2011). “LiDAR- Based Bridge Structure defect Detection,” Experimental Techniques, 35(6), 27-34.
    [13].Liu, W.Q., S.E. Chen and E. Hauser. (2011). “Bridge Clearance Evaluation Based on Terrestrial LiDAR Scan,” ASCE Journal of Performance of constructed Facilities, ASCE, doi:10.1061/(ASCE)CF.1943-5509.0000208.
    [14].Lee, H. M. & Park, H. S. (2008). Estimation of deformed shapes of beam structures using 3D coordinate information from terrestrial laser scanning, computer Modeling in Engineering & Sciences, 29, 29–44.
    [15].L. Truong-Hong, D. Laefer, T. Hinks, H. Carr, Flying voxel method with delaunay triangulation criterion for façade / feature detection for computation, J. Comput. Civ. Eng. 26 (6) (2012) 691–707.
    [16].Min-Koo Kim , Hoon Sohn , Chih-Chen Chang ,Automated dimensional quality assessment of precast concrete panels using terrestrial laser scanning , Autom. Constr. 45 (2014) 163–177.
    [17].Mosalam KM, Takhirov S, Hashemi A. Seismic evaluation of 1940s asymmetric wood-frame building using conventional measurements and high-definition laser scanning. Earthquake Engineering and Structural Dynamics 2009; 38 (10):1175 – 1197.
    [18].Mosalam, K.M., Takhirov, S.M., and Park , S. 2014.
    Applications of Laser Scanning to Structures in Laboratory Tests and Field Surveys. Journal of Structural Control and Health Monitoring. Vol.21,Issue 1, pages 115–134.
    [19].M. Pauly, R. Keiser, L.P. Kobbelt, M. Gross, Shape modeling with point sampled geometry, ACM Trans. Graph. 22 (3) (2003) 641–650.
    [20].Park, H. S., Lee, H. M., Adeli, H. & Lee, I.(2007b), A new approach for health monitoring of structures: terrestrial laser scanning, Computer-Aided Civil and Infrastructure Engineering, 22, 19–30.
    [21].R. Sacks, C.M. Eastman, G. Lee, Process model perspectives on management and engineering procedures in the precast / prestressed concrete industry , J.Constr. Eng. Manag. ASCE 130 (2) (2004) 206–215.
    [22].R. Wong, J.L. Hao , P.X.W. Zou, The application of precast concrete technology in buildings and civil structures construction: Hong Kong experience, Proceedings of the Second International Conference on Construction in the 21st Century (CITC-II), Sustainability and Innovation in Management and Technology, Hong Kong, China, December 10–12, 2003, 2003, pp. 629–634.
    [23].Sun Dian-Zhu , ZHU Chang-zhi , LI Yan-rui. (2009). An improved extraction of boundary characteristic from scattered data, Feb.
    [24].Sahin C. (2015). Planar segmentation of indoor terrestrial laser scanning point clouds via distance function from a point to a plane. Opt Laser Technol; 64 : 23–31.
    [25].Wu Lushen, Yan Haiping, Chen Huawei and Gao Xiangqing. (2014). An boundary extraction algorithm based on scattered point cloud , vol. 31 No.11, Nov.

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE