簡易檢索 / 詳目顯示

研究生: 蕭宇傑
Hsiao, Yu-Chieh
論文名稱: 在聚雙甲基矽氧烷基材上合成一個可切除的胜肽;微陣列並應用於蛋白質激酶的分析
Cleavable Peptide Synthesis on Polydimethylsiloxane (PDMS)-based Microarrays and Its Application for PKA Kinase Assay
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 聚雙甲基矽氧烷金奈米粒子異相交鏈劑t-Boc蛋白質激酶A
外文關鍵詞: PDMS, gold nanoparticles, heterobifunctional crosslinking agent, t-Boc, protein kinase A
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當作一個陣列形式的金奈米粒子鍍膜聚雙甲基矽氧烷表面上之可切斷胜肽的固相合成已被證實。這裡我們以5個色胺酸當作例子、異相交鏈劑當作錨狀試劑、t-Boc保護基/三氟醋酸當作保護基和去保護基試劑以及還原劑來做為切斷胜肽。這個審慎地設計的方法,其內所使用之試劑和溶劑都可和聚雙甲基矽氧烷高分子基材相容;在所有合成步驟過程中的共價鍵生成也藉由衰減全反射傅立葉轉換紅外線光譜儀、原子力顯微鏡和螢光儀來鑑定。此外利用質譜儀來鑑定每一個步驟的產物而估計最後得到5個色胺酸的產率為接近43%。由於聚雙甲基矽氧烷可製備出有彈性的模子,所以這樣的胜肽合成可以在ELISA plate的96孔槽裡面或在已有圖案的聚雙甲基矽氧烷基材上當作一個工具,並藉由光或質譜來發展分析實驗。我們應用此方法在PDMS上合成出kemptide胜肽的微陣列並藉由偵測化學冷光的方式鑑定蛋白質激酶A可磷酸化於kemptide胜肽絲胺酸的側鏈上。

    Solid state synthesis of cleavable peptides on the surface of gold nanoparticle-coated poly(dimethylsiloxane) (PDMS) substrate was demonstrated as an array format using a 5-mer molecule of poly-Trp5 as an example and heterobifunctional crosslinkers as the anchoring layer, t-Boc chemistry/ trifluoroacetic acid (TFA) for protection and de-protection, and reducing agents for peptide cleavage. The method was judiciously designed to use reagents and solvents that are compatible with the PDMS polymer substrate and the formation of the covalent binding during the synthesis steps were monitored by Infrared spectroscopy (IR), Atomic Force Microscopy (AFM) and Fluorescence spectroscopy. The products of each step were characterized by mass spectrometry and the final production yield of the 5-mers was estimated to be near 43%. Due to flexible molding techniques for PDMS fabrication, such peptide synthesis can be implemented inside a traditional 96-well ELISA plate or on a patterned PDMS substrate for assay developments using either the light or MS detection. We applied the method to fabricate kemptide peptide microarrays on PDMS and demonstrated that protein kinase A (PKA) could phosphorylate the serine residue by chemiluminescence detection.

    第一章 研究內容 1 1.1研究動機 1 1.2研究策略與方向 2 第二章 文獻回顧 3 2.1胜肽晶片之簡介 3 2.1.1基材的選定 3 2.1.2基材上的表面修飾 5 2.1.3胜肽晶片應用與分析 6 2.1.4偵測方法的開發 8 2.2固相胜肽合成法(solid phase peptide synthesis) 10 2.2.1固態樹酯(solid support) 11 2.2.2保護基(protecting group) 11 2.2.3活化試劑(activating group) 12 2.3聚雙甲基矽氧烷(PDMS)晶片 13 2.4 PDMS的表面修飾技術 14 2.5原位合成金奈米粒子(in-situ AuNPs)在PDMS的應用 16 第三章 實驗部分 32 3.1實驗藥品與儀器 32 3.1.1實驗藥品 32 3.1.2實驗儀器 33 3.2 PDMS基材之製作 33 3.3 PDMS-AuNPs複合基材的製備 34 3.4雙硫鍵在複合基材上的製備 35 3.5聚胺基酸在複合基材上的製備 35 3.6複合基材上鑑定聚胺基酸的方法 36 3.6.1原子力顯微鏡(AFM)的鑑定 36 3.6.2衰減全反射傅立葉轉換紅外線光譜儀(ATR-FTIR)的鑑定 37 3.6.3螢光光譜儀(Fluorescence Spectrophotometer)的鑑定 37 3.6.4 四極柱-飛行時間式(Q-TOF)質譜儀的鑑定 37 3.7複合基材上合成kemptide序列的聚胺基酸和它的應用 38 3.7.1 PKA kinase activity kit之測試 38 3.7.2複合基材上修飾市售kemptide和它的PKA激酶磷酸化測試 39 3.7.3複合基材上修飾kemptide序列的聚胺基酸和它的PKA激酶磷酸化測試 39 第四章 結果與討論 43 4.1原位合成PDMS-AuNPs複合基材 43 4.2原子力顯微鏡對複合基材表面修飾的特性分析 44 4.3傅立葉轉換紅外線光譜儀對複合基材表面修飾的特性分析 45 4.4螢光光譜儀對複合基材表面修飾的特性分析 46 4.5四極柱-飛行時間質譜儀對合成多胺基酸的特性分析 47 4.6 PKA激酶在修飾有kemptide序列的聚胺基酸複合基材上之活性測試(Kinase assay)結果 49 4.7探討在有無修飾雙硫鍵以及修飾不同連接子(linker)對PKA激酶分析結果的影響 51 第五章 結論 79 參考文獻 80

    1 Fodor, S. P. A. et al. Light-directed, spatially addressable parallel. Science, 251, 767-773 (1991).
    2 McGall, G. et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proceedings of the National Academy of Sciences, 93, 13555-13560 (1996).
    3 Singh-Gasson, S. et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature biotechnology, 17, 974-978 (1999).
    4 Pellois, J. P. et al. Individually addressable parallel peptide synthesis on microchips. Nature biotechnology, 20, 922-926 (2002).
    5 Frank, R. Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron, 48, 9217-9232 (1992).
    6 Frank, R. The SPOT-synthesis technique: synthetic peptide arrays on membrane supports—principles and applications. Journal of immunological methods, 267, 13-26 (2002).
    7 Xu, Q. & Lam, K. S. Protein and chemical microarrays—powerful tools for proteomics. BioMed Research International, 2003, 257-266 (2003).
    8 Houseman, B. T., Gawalt, E. S. & Mrksich, M. Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir, 19, 1522-1531 (2003).
    9 Falsey, J. R., Renil, M., Park, S., Li, S. & Lam, K. S. Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjugate chemistry, 12, 346-353 (2001).
    10 Salisbury, C. M., Maly, D. J. & Ellman, J. A. Peptide microarrays for the determination of protease substrate specificity. Journal of the American Chemical Society, 124, 14868-14870 (2002).
    11 Lesaicherre, M.-L., Uttamchandani, M., Chen, G. Y. & Yao, S. Q. Developing site-specific immobilization strategies of peptides in a microarray. Bioorganic & medicinal chemistry letters, 12, 2079-2083 (2002).
    12 MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760-1763 (2000).
    13 Su, J. & Mrksich, M. Using Mass Spectrometry to Characterize Self‐Assembled Monolayers Presenting Peptides, Proteins, and Carbohydrates. Angewandte Chemie International Edition, 41, 4715-4718 (2002).
    14 Min, D.-H., Tang, W.-J. & Mrksich, M. Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nature biotechnology, 22, 717-723 (2004).
    15 Wegner, G. J., Lee, H. J. & Corn, R. M. Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Analytical Chemistry, 74, 5161-5168 (2002).
    16 Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society, 85, 2149-2154 (1963).
    17 Duffy, D. C., McDonald, J. C., Schueller, O. J. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical chemistry, 70, 4974-4984 (1998).
    18 Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Analytical chemistry, 75, 6544-6554 (2003).
    19 Lahann, J. et al. Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Analytical chemistry, 75, 2117-2122 (2003).
    20 Liu, Y., Fanguy, J. C., Bledsoe, J. M. & Henry, C. S. Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Analytical chemistry, 72, 5939-5944 (2000).
    21 Yang, T., Jung, S.-y., Mao, H. & Cremer, P. S. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Analytical chemistry, 73, 165-169 (2001).
    22 Makamba, H., Hsieh, Y.-Y., Sung, W.-C. & Chen, S.-H. Stable permanently hydrophilic protein-resistant thin-film coatings on poly (dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking. Analytical chemistry, 77, 3971-3978 (2005).
    23 Sung, W.-C., Chang, C.-C., Makamba, H. & Chen, S.-H. Long-term affinity modification on poly (dimethylsiloxane) substrate and its application for ELISA analysis. Analytical chemistry, 80, 1529-1535 (2008).
    24 Sung, W.-C., Chen, H.-H., Makamba, H. & Chen, S.-H. Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly (dimethylsiloxane) microchannels for flow-through immunoassays. Analytical chemistry, 81, 7967-7973 (2009).
    25 Chen, H.-H., Sung, W.-C., Liang, S.-S. & Chen, S.-H. Functional Fluorinated Modifications on a Polyelectrolyte Coated Polydimethylsiloxane Substrate for Fabricating Antibody Microarrays. Analytical chemistry, 82, 7804-7813 (2010).
    26 Wang, A.-J., Xu, J.-J., Zhang, Q. & Chen, H.-Y. The use of poly (dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta, 69, 210-215 (2006).
    27 Luo, C. et al. PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles. Lab on a Chip, 5, 726-729 (2005).
    28 Wang, B. et al. Chitosan-mediated synthesis of gold nanoparticles on patterned poly (dimethylsiloxane) surfaces. Biomacromolecules, 7, 1203-1209 (2006).
    29 Zhang, Q., Xu, J.-J., Liu, Y. & Chen, H.-Y. In-situ synthesis of poly (dimethylsiloxane)–gold nanoparticles composite films and its application in microfluidic systems. Lab Chip, 8, 352-357 (2008).
    30 Wu, W.-Y., Bian, Z.-P., Wang, W., Wang, W. & Zhu, J.-J. PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sensors and Actuators B: Chemical, 147, 298-303 (2010).
    31 Wang, W. et al. Aptamer-based PDMS–gold nanoparticle composite as a platform for visual detection of biomolecules with silver enhancement. Biosensors and Bioelectronics, 26, 3110-3114 (2011).
    32 Min, D.-H. & Mrksich, M. Peptide arrays: towards routine implementation. Current opinion in chemical biology, 8, 554-558 (2004).
    33 Panicker, R. C., Huang, X. & Yao, S. Q. Recent advances in peptide-based microarray technologies. Combinatorial chemistry & high throughput screening, 7, 547-556 (2004).
    34 Fritz, J. L. & Owen, M. J. Hydrophobic recovery of plasma-treated polydimethylsiloxane. The Journal of Adhesion, 54, 33-45 (1995).
    35 Efimenko, K., Wallace, W. E. & Genzer, J. Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. Journal of Colloid and Interface Science, 254, 306-315 (2002).
    36 Hu, S. et al. Surface-directed, graft polymerization within microfluidic channels. Analytical chemistry, 76, 1865-1870 (2004).
    37 Frey, B. L. & Corn, R. M. Covalent attachment and derivatization of poly (L-lysine) monolayers on gold surfaces as characterized by polarization-modulation FT-IR spectroscopy. Analytical Chemistry, 68, 3187-3193 (1996).

    下載圖示 校內:2019-08-18公開
    校外:2019-08-18公開
    QR CODE