| 研究生: |
莊朝惠 Zhuang, Chao-Hui |
|---|---|
| 論文名稱: |
多孔性水膠薄膜的製備及仿淋巴液過濾應用研究 Fabrication of Porous Hydrogels and Their Applications on Artificial Lymphatic Drainage |
| 指導教授: |
劉俊彥
Liu, Chun-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 淋巴引流 、水膠 、雙電性高分子 、過濾膜 、抗細胞貼附 |
| 外文關鍵詞: | lymphatic drainage, hydrogels, polyampholytes, filtration film, cell anti-adhesion |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成了一系列多孔性水膠,並製備了仿淋巴液過濾裝置。使用自由基聚合方法,合成了含有正電單體及負電單體的多孔性水膠。透過電子顯微鏡分析結果,所合成出的多孔性水膠之平均孔洞大小為10μm。加入丙烯醯胺(Acrylamide)降低了平均孔洞大小且降低了水膠的機械性質。此外,增加雙電性高分子的含量會大幅地降低平均孔洞大小,且含有較多雙電性高分子的水膠展現出較好的抵抗外力的能力。為了研究水膠的抗細胞貼附特性,將水膠用於人類真皮纖維細胞(NHDF)的培養。結果顯示,水膠具有很好的抗細胞貼附特性,原因為水膠整體的帶電性為微負電性。在螢光顯微鏡的觀察下,PA151水膠表現出最好的抗貼附特性。另外,水膠前驅液用於濾紙表面的塗布,改質後的濾紙表現出極佳的仿淋巴液過濾效果,仿淋巴液中的細胞皆可被擋住,不通過濾紙。由上述的實驗結果可得知,水膠前驅液及改質過的濾紙可被實際應用於淋巴液的引流。此研究中所使用的是具新穎性且簡單的製備方法,透過此方法製備的水膠過濾膜可以成功達到淋巴過濾的目的。
In this study, we demonstrate the synthesis of porous hydrogels and the fabrication of filters for artificial lymph drainage. A series of porous hydrogels with positive and negative charged pendant groups was synthesized via free-radical copolymerization. Based on the SEM analysis, the synthesized average pore size is about 10 μm. The incorporation of acrylamide (AM) increases the average pore size and decreases the mechanical strength due to the decrease of ionic pendant group interactions. Furthermore, increase of polyampholyte content decreases the average pore size obviously. Hydrogels with more polyampholyte (PA) contents demonstrate the better resistance of external force. To study the anti-adhesion of the synthesized hydrogels, normal human dermal fibroblast (NHDF) cells were seeded on to the porous hydrogels. Due to the predesigned negative charge, the synthesized hydrogels show significant anti-adhesion of cells. Based on the fluorescence imaging results, the synthesized PA151 hydrogel shows the best cell anti-adhesion. Moreover, the synthesized hydrogels were used to modify the surface of paper filters showing excellent artificial lymph fluid filtration. The fluorescence images of the filtrates via the synthesized surface modified filters show that NHDF cells were successfully filtered out. Based on the results, the predesigned hydrogel precursors and the surface modified paper filters are available for the lymphatic drainage. The fabrication method created in this study is a novel idea and it is an easy way for the preparation of lymph fluid filtration equipment.
1. Emmanouil Michopoulos, George Papathanasiou, Georgios Vasilopoulos, Maria Polikandrioti, Evangelos Dimakakos, Effectiveness and Safety of Complete Decongestive Therapy of Phase I: A Lymphedema Treatment Study in the Greek Population, Cureus. 12 (7), 2020.
2. Amir H. Taghinia, Joseph Upton, Cameron C. Trenor III, Ahmad I. Alomari, Anna P. Lillis, Raja Shaikh, Patricia E. Burrows, Steven J. Fishman, Lymphaticovenous bypass of the thoracic duct for the treatment of chylous leak in central conducting lymphatic anomalies, Journal of Pediatric Surgery. 54 (3), 562-568 (2019).
3. Ran Ito, Jonathan Zelken, Chin-Yu Yang, Chia-Yu Lin, Ming-Huei Cheng. Proposed pathway and mechanism of vascularized lymph node flaps, Gynecologic Oncology. 141, 182-188 (2016).
4. A. Mallick and A. R. Bodenham, Disorders of the lymph circulation: their relevance to anaesthesia and intensive care, British Journal of Anaesthesia. 91 (2), 2003.
5. Claudiu E. Nistor, Adrian Ciuche & Ecaterina Bontaș. Embryology and Surgical Anatomy of the Mediastinal Lymphatic System, Thoracic Surgery. 105-115, first online: 02 Oct. 2020.
6. J. H. Kou, D. Fleisher, and G. L. Amidon, "Release of phenylpropanolamine from dynamically swelling poly-(hydroxyethyl methacrylate-co-methacrylic acid) hydrogels," in Cosmetic and Pharmaceutical Applications of Polymers: Springer, 1991, pp. 201-208.
7. T. R. Hoare and D. S. Kohane, "Hydrogels in drug delivery: Progress and challenges," Polymer, vol. 49, no. 8, pp. 1993-2007, 2008.
8. S. Panpinit, S.-a. Pongsomboon, T. Keawin, and S. Saengsuwan, "Development of multicomponent interpenetrating polymer network (IPN) hydrogel films based on 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), polyvinyl alcohol (PVA) and chitosan (CS) with enhanced mechanical strengths, water swelling and antibacterial properties," Reactive and Functional Polymers, vol. 156, p. 104739, 2020.
9. X. Li, Q. Sun, Q. Li, N Kawazoe, and G. Chen, Functional hydrogels with tunable structures and properties for tissue engineering applications, Frontiers in chemistry, vol.6, p. 499, 2018.
10. I. P. Harrison and F. Spanda, Hydrogels for atopic dermatitis and wound management: a superior drug delivery vehicle, Pharmaceutics, vol. 10, no. 2, p. 71,2018.
11. Qinyuan Chai,Yang Jiao, Xinjun Yu, Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them, Gels,3(1), 6, 2017.
12. Hansoo Park, Xuan Guo, Johnna S. Temenoff, Yasuhiko Tabata, Arnold I. Caplan, F. Kurtis Kasper, and Antonios G. Mikos, Effect of Swelling Ratio of Injectable Hydrogel Composites on Chondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal Stem Cells In Vitro, Biomacromolecules, 10, 3, 541–546, 2009.
13. Adam ChyzyORCID, Marta E. Plonska-Brzezinska, Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering, Molecules, 25, 24, 5795, 2020.
14. Qiu Li Loh, Cleo Choong, Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size, Tissue Engineering Part B: Reviews, 19, 6, p. 485-502, 2013.
15. Yong Zhang, Miqin Zhang, Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering, Journal of Biomedical Materials Research, 55, 3, p. 304-312, 2001.
16. Yang Hu, Jeffrey M. Catchmark, Yongjun Zhu, Noureddine Abidi, Xin Zhou, Jinhui Wang, Nuanyi Liang, Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering, Journal of Materials Research, 29, 22, p. 2682-2693, 2014.
17. Saey TuanHoa, Dietmar W.Hutmacher, A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials, 27, 8, p. 1362-1376, 2006.
18. ClaytonGrove, Dougal A.Jerram, jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections, Computers & Geosciences, Volume 37, Issue 11, p. 1850-1859, 2011.
19. R. Landers, A. Pfister, U. Hübner, H. John, R. Schmelzeisen & R. Mülhaupt, Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques, Journal of Materials Science, 37, 15, p. 3107-3116, 2002.
20. Helen M. Simms, Christopher M. Brotherton, Brian T. Good,a Robert H. Davis, Kristi S. Anseth, Christopher N. Bowman, In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching, Lab on a Chip, 5, 2, p. 151-157, 2005.
21. Xuemei Wu, Lindsay Black, Guido Santacana-Laffitte, Charles W. Patrick Jr, Preparation and assessment of glutaraldehyde-crosslinked collagen–chitosan hydrogels for adipose tissue engineering, Journal of biomedical materials research Part A, 81, 1, p. 59-65, 2007.
22. Kang Moo Huh, Namjin Baek, Kinam Park, Enhanced Swelling Rate of Poly(ethylene glycol)-Grafted Superporous Hydrogels, Journal of Bioactive and Compatible Polymers, 20, 3, p. 231-243, 2005.
23. Quynh P. Pham, Upma Sharma, and Dr. Antonios G. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review, 12, 5, p. 1197-1211, 2006.
24. Tony Fischer, Alexander Hayn, Claudia Tanja Mierke, Fast and reliable advanced two-step pore-size analysis of biomimetic 3D extracellular matrix scaffolds, Scientific reports, 9, 1, p. 1-10, 2019.
25. Jeong-Yun Sun, Xuanhe Zhao, Widusha R. K. Illeperuma, Ovijit Chaudhuri, Kyu Hwan Oh, David J. Mooney, Joost J. Vlassak and Zhigang Suo, Highly stretchable and tough hydrogels, Nature, 289, 7414, p. 133-136, 2016.
26. Manish K. Jaiswal, Janet R. Xavier, James K. Carrow, Prachi Desai, Daniel Alge, and Akhilesh K. Gaharwar, Mechanically Stiff Nanocomposite Hydrogels at Ultralow Nanoparticle Content, ACS nano, 10, 1, p. 246-256, 2016.
27. Yong Qiu, Kinam Park, Superporous IPN hydrogels having enhanced mechanical properties, Aaps Pharmscitech, 4, 4, p. 406-412, 2003.
28. Md. AnamulHaquea, TakayukiKurokawaab, Jian PingGong, Super tough double network hydrogels and their application as biomaterials, Polymer, Volume 53, Issue 9, Pages 1805-1822, 2012.
29. Jasmin Omar,Daniel Ponsford,Dr. Cécile A. Dreiss,Dr. Tung-Chun Lee,Prof. Xian Jun Loh, Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications, First published: 19 March 2022.
30. T. L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, and J.P.J.N. m. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nature Materials, vol. 12, no. 10, p. 932, 2013.
31. Stephanie L. Haag, Matthew T. Bernards, Polyampholyte Hydrogels in Biomedical Applications, MDPI, 3(4), 41, 2017.
32. A. Bukowska, W. Bukowski, and J. Noworól, New 2-hydroxyethyl methacrylate resins with good swelling characteristics. Journal of Applied Polymer Science, 2006. 101(3): p. 1487-1493.